EXPLORATION GEOCHEMISTRY: DESIGN AND INTERPRETATION OF SOIL SURVEYS

in cooperation with The Association of Exploration Geochemists

CONTENTS

Getting it Right I. Thomson
The Soil Survey—Designing an Exploration Program S.J. Hoffman
Soil Sampling S.J. Hoffman
Analysis of Soil Samples W.K. Fletcher
Statistical Interpretation of Soil Geochemical Data A.J. Sinclair
Models, Interpretation, and Followup S.J. Hoffman and I. Thomson
Case History and Problem 1: The Tonkin Springs Gold Mining District, Nevada, USA M.B. Mehrtens
Case History and Problem 2: Coed-Y-Brenin Porphyry Copper, North Wales, Great Britain M.B. Mehrtens
Case History and Problem 3: The Volcanogenic Massive-Sulfide Target S.J. Hoffman
Case History and Problem 4: The Volcanogenic Massive Sulfide, a Second Example S.J. Hoffman
Case History and Problem 5: A Copper Property S.J. Hoffman

Editors
W.K. Fletcher, S.J. Hoffman, M.B. Mehrtens, A.J. Sinclair and I. Thomson

SOCIETY OF ECONOMIC GEOLOGISTS, INC.
Reviews in Economic Geology, Vol. 3

Exploration Geochemistry:
Design and Interpretation of Soil Surveys

in cooperation with
The Association of Exploration Geochemists

W.K. Fletcher, S.J. Hoffman, M.B. Mehrtens, A.J. Sinclair and I. Thomson, Editors
J.M. Robertson, Series Editor

Additional copies of this publication can be obtained from

Society of Economic Geologists, Inc.
7811 Shaffer Parkway
Littleton, CO 80127
www.segweb.org

ISBN: 978-1-629495-61-3
FOREWORD

Volume 3 of Reviews in Economic Geology—Exploration Geochemistry: Design and Interpretation of Soil Surveys—represents a major effort by and contribution from the Association of Exploration Geochemists (AEG) and especially its Vancouver connection. The volume draws extensively on the cumulative teaching, research, and industry experience of its five authors, and it contains numerous ‘real-life’ examples of exploration failures as well as successes. A preliminary version of this volume served as the text for a jointly sponsored Society of Economic Geologists (SEG)–AEG Short Course that was given in February, 1987, prior to the combined winter meeting of the SEG and annual meetings of the Society of Mining Engineers and A.I.M.E. in Denver, Colorado.

It has been a special pleasure to work with W. K. Fletcher (Department of Geological Sciences, U.B.C.) whose patience and sense of humor survived the herculean task of initial text and figure assembly. He met his deadlines despite the vagaries of changing figure specifications, colleagues’ schedules, and the Canadian Postal System.

Volume 3 has benefited greatly from the professional attentions of Carol Hjellming (New Mexico Bureau of Mines and Mineral Resources editing staff) who now serves as the part-time official assistant to the Series Editor. In addition to performing more traditional editorial chores, Carol has been instrumental in setting up the procedures and print codes that allowed us to utilize the computer-driven typesetting equipment of the University of New Mexico Printing Plant.

Finally, I wish to acknowledge the continuing support, both moral and economic, of the New Mexico Bureau of Mines and Mineral Resources and its Director, Frank Kottlowski.

James M. Robertson
Series Editor
Socorro, N. M.
April, 1987
CONTENTS

FOREWORD .. ii
PREFACE ... v
BIOGRAPHIES ... vi

Chapter 1—GETTING IT RIGHT
INTRODUCTION ... 1
CHOICE OF METHODS ... 1
OPTIMIZING SURVEY TECHNIQUES 2
BASIC OBJECTIVES .. 2
Optimum Target Identification 2
Maximum Geochemical Contrast 3
Minimum False Alarm Rate 5
Cost Effectiveness .. 6
SURVEY PARAMETERS ... 7
ORIENTATION STUDIES ... 10
The Orientation Survey .. 10
A Literature Study .. 10
A Theoretical Orientation .. 10
SURVEY ORGANIZATION AND OPERATION 10
PROBLEM 1: MOLYBDENUM IN SIERRA LEONE 11
Objective ... 11
DESCRIPTION OF THE AREA .. 11
ASSUMED .. 11
QUESTIONS ... 11
PROBLEM 2: EXPLORATION FOR BASE METALS IN A GLACIATED AREA OF CENTRAL NORWAY 12
Objective ... 12
DESCRIPTION OF THE AREA .. 12
ASSUMED .. 13
QUESTIONS ... 14
REFERENCES ... 17

Chapter 2—THE SOIL SURVEY—DESIGNING AN EXPLORATION PROGRAM
INTRODUCTION .. 19
PHASE 1—THE OFFICE .. 19
The Unconformity-Related Uranium Deposit 19
The Epithermal Gold Deposit 21
PHASE 2—THE FIELD ORIENTATION VISIT 22
The Unconformity-Related Uranium Deposit 22
Introduction .. 22
Athabasca Basin .. 23
Thelon Basin .. 24
Hornby Bay Basin .. 24
The Preliminary Field Visit—Is It Necessary? 25
The Epithermal Gold Deposit 26
CONTINUED OFFICE PLANNING 26
The Unconformity-Related Uranium Deposit 26
The Epithermal Gold Deposit 26
REGIONAL EXPLORATION ... 27
The Unconformity-Related Uranium Deposit 27
The Epithermal Gold Deposit 28
THE ROUTINE SOIL SURVEY ... 28
The Unconformity-Related Uranium Deposit 28
The Epithermal Gold Deposit 28

THE ULTIMATE TEST—THE DIAMOND DRILL PROGRAM 31
The Unconformity-Related Uranium Deposit 31
The Epithermal Gold Deposit 33
CONCLUDING SUMMARY .. 33
ANSWERS TO EPITHERMAL GOLD DEPOSIT QUESTIONS 33
REFERENCES ... 38

Chapter 3—SOIL SAMPLING
INTRODUCTION .. 39
THE SOIL SURVEY AS PART OF THE EXPLORATION PROGRAM .. 40
AN EXPLORATION EXAMPLE—THE “QUICK AND DIRTY” VERSUS THE “SLOW AND PROFESSIONAL” APPROACH 41
GEOCHEMICAL FACTORS AFFECTING TRACE ELEMENT DISTRIBUTION: SOIL DESCRIPTIONS ... 43
SAMPLE TYPE ... 45
SAMPLE NUMBER ... 47
TOPOGRAPHY .. 48
SITE DRAINAGE AND GROUNDWATER SEEPAGE 48
OVERBURDEN ORIGIN ... 48
SOIL pH ... 52
TEXTURE ... 54
SAMPLE DEPTH ... 54
SOIL HORIZON ... 57
ROCK TYPE ... 64
CONTAMINATION .. 66
COARSE FRAGMENTS .. 66
GAMMA COUNT AT SAMPLE SITE 70
OTHER PARAMETERS—COMPOSITION AND/OR SITE 70
SUMMARY ... 70
ACKNOWLEDGEMENTS ... 70
REFERENCES ... 70
APPENDIX I ... 71
APPENDIX II .. 72
APPENDIX III .. 76

Chapter 4—ANALYSIS OF SOIL SAMPLES
INTRODUCTION ... 79
DISTRIBUTION OF TRACE METALS IN SOILS 80
SAMPLE PREPARATION ... 81
SAMPLE DECOMPOSITION ... 82
INTRODUCTION ... 82
STRONG DECOMPOSITIONS .. 82
PARTIAL EXTRACTIONS ... 84
ANALYTICAL METHOD ... 85
QUALITY CONTROL AND RELIABILITY 87
RANDOM ERRORS AND PRECISION 87
SYSTEMATIC ERRORS ... 89
CONTAMINATION .. 90
DRIFT ... 91
INTERFERENCES .. 91
Chapter 5—STATISTICAL INTERPRETATION OF SOIL GEOCHEMICAL DATA
INTRODUCTION .. 97
BASIC STATISTICS ... 99
GENERAL STATEMENT 99
CENTRAL TENDENCY ... 99
Arithmetic Mean .. 99
Median ... 99
Mode .. 99
Geometric Mean ... 99
DISPERSION .. 99
Range ... 99
Variance .. 99
Standard Deviation ... 99
Percentiles .. 100
HISTOGRAMS .. 100
CONTINUOUS DISTRIBUTIONS 100
STANDARD NORMAL DISTRIBUTION 101
LOGNORMAL DISTRIBUTIONS 101
FITTING A NORMAL CURVE TO A HISTOGRAM 102
CUMULATIVE DISTRIBUTIONS 103
CONFIDENCE LIMITS 103
F AND T TESTS .. 103
PROBABILITY GRAPHS 104
CORRELATION .. 106
INTRODUCTION ... 106
ANALYSIS OF A MATRIX OF CORRELATION 107
“CORRELATION” OF POPULATIONS 109
CORRELATIONS AMONG PERCENTAGE DATA 109
AUTOCORRELATION .. 109
POSSIBLE PROBLEMS IN CORRELATION STUDIES 110
SIMPLE LINEAR REGRESSION 110
INTRODUCTION ... 110
SUMMARY OF FORMULAE 111
SOME APPLICATIONS OF LINEAR REGRESSION 111
DEGREE OF FIT .. 112
ERRORS IN BOTH VARIABLES 113
CHI SQUARE DISTRIBUTION 113
INTRODUCTION ... 113
GOODNESS OF FIT .. 113
TWO-WAY CONTINGENCY TABLES 114
FINAL REMARKS .. 114
REFERENCES .. 115

Chapter 6—MODELS, INTERPRETATION, AND FOLLOWUP
MODELS ... 117
GENERAL BACKGROUND 117
LANDSCAPE GEOCHEMISTRY 117
IDEALIZED MODELS 118
EXAMPLES .. 119
APPLICATIONS ... 121
INTERPRETATION .. 122
LANDSCAPE/TOPOGRAPHY 126

Chapter 7—CASE HISTORY AND PROBLEM 1: THE TONKIN SPRINGS GOLD MINING DISTRICT, NEVADA, U.S.A. 129
PRELIMINARY STUDIES 139
FIELD ORIENTATION 139
CONTINUED OFFICE PLANNING 141
PROPERTY EVALUATION 141
ANOMALY FOLLOWUP—DRILL TESTING 141
ANSWERS .. 141
SUMMARY ... 146
REFERENCES .. 146

Chapter 8—CASE HISTORY AND PROBLEM 2: COED-Y-BRENIN PORPHYRY COPPER, NORTH WALES, GREAT BRITAIN 135
PRELIMINARY STUDIES 147
FIELD OBSERVATIONS 147
CONTINUED OFFICE PLANNING 147
PROPERTY EVALUATION 147
ANOMALY FOLLOWUP—DRILL TESTING 152
ANSWERS .. 152
SUMMARY ... 154

Chapter 9—CASE HISTORY AND PROBLEM 3: THE VOLCANOGENIC MASSIVE-SULFIDE TARGET
PRELIMINARY STUDIES 139
FIELD ORIENTATION 139
CONTINUED OFFICE PLANNING 141
PROPERTY EVALUATION 141
ANOMALY FOLLOWUP—DRILL TESTING 152
ANSWERS .. 152
SUMMARY ... 154

Chapter 10—CASE HISTORY AND PROBLEM 4: THE VOLCANOGENIC MASSIVE SULFIDE, A SECOND EXAMPLE
PRELIMINARY STUDIES 147
FIELD OBSERVATIONS 147
CONTINUED OFFICE PLANNING 147
PROPERTY EVALUATION 147
ANOMALY FOLLOWUP—DRILL TESTING 152
ANSWERS .. 152
SUMMARY ... 154

Chapter 11—CASE HISTORY AND PROBLEM 5: A COPPER PROPERTY
PRELIMINARY STUDIES 155
FIELD ORIENTATION 155
NORTH CIRQUE .. 155
NORTH CREEK ... 155
NORTH TIP ... 155
TABLETOP HIGHLANDS 155
SOUTH CIRQUE .. 155
MAIN VALLEY .. 159
L. MOUNTAIN ... 159
PEGMATITE HILL ... 159
SOILS .. 159
SEMIREGIONAL EXPLORATION 159
CONTINUED OFFICE PLANNING 159
PROPERTY EVALUATION 159
GEOLOGY .. 160
GEOPHYSICAL SURVEYS 160
SOIL GEOCHEMISTRY 165
ANOMALY FOLLOWUP—DRILL TESTING 170
ANSWERS .. 170
SUMMARY ... 180
REFERENCES .. 180

TABLES OF CONVERSION FACTORS . Inside back cover
PREFACE

The principles and practical considerations underlying utilization of soils as a medium for exploration geochemistry are well described in several textbooks. Moreover, not only are soil surveys routinely undertaken in such diverse environments as tropical rainforests and arctic permafrost, soils are probably the most frequently collected and analyzed medium in exploration geochemistry. What, then, is the justification for devoting the third volume in the Society of Economic Geologists Reviews in Economic Geology to this apparently routine, well established prospecting method?

Unfortunately, it is the experience of the contributors to this volume that effectiveness of soil surveys is often compromised when the conceptual simplicity of the method leads to its unthinking application. For example, failure to appreciate the characteristics of the geochemical environments of a landscape can lead to collection of the wrong sample material or choice of unsuitable methods of sample preparation and analysis. Similarly, emphasis on speed rather than quality of sampling, rigid adherence to standard laboratory methods, and simplistic interpretations of high values can result in exploration dollars being wasted on false anomalies while genuine, but more subtle, anomalies go unrecognized or are assigned low priorities. In contrast to the foregoing, rational application of soil surveys depends on the successful selection and linkage of appropriate methods of sample collection, analysis, and interpretation—often on the basis of an initial orientation survey. Decisions must be made at each step and an error at any single step may jeopardize the entire exploration effort.

Chapters in this volume discuss each step in the soil survey from sample collection through analysis and statistical interpretation of the data to selection of targets for followup. Factors to be considered and the decisions that must be made are illustrated by numerous examples and case histories. However, rather than presenting the case histories in a simple narrative fashion, we have attempted to challenge the reader, by asking questions as each case history unfolds, to become a participant in the exploration process. In some—but not all—cases we have provided answers (or our opinions as to what reasonable answers might be). The case histories are largely from our own experience and many reflect our geographical bias towards northern glaciated regions. We do not believe this to be a deficiency insofar as this volume is intended not as a comprehensive guidebook to interpretation of soil surveys but as an introduction to undertaking surveys in a thoughtful and logical fashion. Indeed this volume will be a success if its omissions provoke you into asking similar (though not necessarily the same) questions of your own geochemical landscapes and soil surveys.

ACKNOWLEDGEMENTS—In preparing this volume the authors were assisted by many individuals and organizations who generously contributed their time, technical facilities, experience, and comments. We are especially grateful to our respective employers for their support and freedom to use company case histories even when these were not entirely flattering. Of the many who encouraged and assisted, the following deserve special mention: Riofinex and CARGO Partners for giving M. B. Mehrtens use of the Coed-y-Brenin and Tonkin Springs case histories, respectively; BP-Selco, D. K. Mustard, C. M. H. Jennings and G. G. Mitchell for their assistance to Stan Hoffman; and Placer Development Limited for their support of Ian Thomson's contributions. Donna M. Baylis greatly assisted K. Fletcher in editing and preparing the text. Finally, we must acknowledge the patience of Jamie Robertson, Series Editor, Reviews in Economic Geology, and the support of both the Association of Exploration Geochemists and the Society of Economic Geologists.

W. K. Fletcher
Chairman
Short Course Committee
Association of Exploration Geochemists
W. K. FLETCHER received both his B.Sc. in Geology and Ph.D. in Applied Geochemistry at the Imperial College of Science and Technology, University of London. He joined the Department of Geological Sciences, University of British Columbia in 1968 and is now an Associate Professor. During leaves of absence he has been Chief Geochemist to MINDECO (Zambia) and Geochemist and Team Leader to the United Nations Project at the Southeast Asia Tin Research and Development Centre in Malaysia. He is an author of more than fifty scientific papers on applied geochemistry and of a textbook *Analytical Methods in Geochemistry Prospecting*. He is a former council member of the Association of Exploration Geochemists and is the current Chairman of the association’s Short Course Committee.

STAN J. HOFFMAN received his B.Sc. in Geology and Chemistry from McGill University and his M.Sc. and Ph.D. in exploration geochemistry at the University of British Columbia. He has more than twenty years of field-related experience working for a number of mineral exploration companies including INCO, Amax, Rio Tinto and BP Minerals. He is currently Senior Geochemist for the Selco Division of BP Resources Canada Limited and is based in Vancouver. He has actively advanced use of geochemistry by the mineral exploration community through short courses, organization of symposia (GOLD-81 and GEOEXPO/86) and compilation of a manual on “Writing Geochemical Reports” (Association of Exploration Geochemists, Special Volume 12). He is a Member of Council of the Association of Exploration Geochemists and President of the AEG for 1987–1988.

MIKE B. MEHRTENS has a B.Sc. in Geology and received his Ph.D. in Applied Geochemistry (1966) from the Imperial College of Science and Technology, University of London. He has been employed in mining and exploration for base and precious metals in Zambia, South Africa, the United Kingdom, Saudi Arabia, and Panama. He is currently President of U.S. Minerals Exploration Company (USMX) based in Denver, Colorado.

ALASTAIR J. SINCLAIR, P. Eng., has had 24 years of teaching, research, and consultancies in the mineral industry. He has taught economic geology, geological data analysis, and geostatistics during a 22-year career in the Department of Geological Sciences, University of British Columbia, where he is now Professor and Head of Department. During that period he has been involved in a broad range of local and international consulting for numerous mining companies as well as the Provincial government and the United Nations, particularly in the fields of mineral property evaluation, mineral exploration data analysis, and geostatistical ore reserve estimation. His research and field work since the late 1950’s has led to more than 100 scientific and technical publications, many of which have direct application to exploration for and evaluation of mineral deposits. Dr. Sinclair has served in executive capacities for a variety of professional organizations including The Canadian Institute of Mining and Metallurgy, The Mineral Deposits Division of the Geological Association of Canada, and the Society of Economic Geologists and is active in the Association of Professional Engineers of British Columbia.

IAN THOMSON received his Ph.D. in Applied Geochemistry for research at Imperial College of Science and Technology, University of London. On graduation he joined Barringer Research Limited where, over an eight-year period, he was involved in the development of field and analytical techniques in geochemistry, and consulting and project work in Canada, the U.S.A., Central and South America, the southwest Pacific islands and the Middle East. In 1978 he joined the Ontario Geological Survey where, for three years, he was involved in a number of studies including deep-overburden-till sampling in the Abitibi Clay Belt and an examination of the impact of acid rain on the geochemistry of lakes. He joined Placer Development Limited in 1981 as Senior Geochemist and later became Manager Western Canada Exploration based in Vancouver. In 1987 he joined Pan Orvana Resources as Chief Geologist. He is a former President of the Association of Exploration Geochemists and the Canadian Geoscience Council and is author of numerous publications on applied geochemistry.