Biotite Geochemical Characteristics as Vectors to Barren and Mineralized Intrusions at the Sungun Porphyry Copper Deposit, Northwestern Iran

Parinesa Moshefi,1,* Mohammad Reza Hosseinzadeh,1 Mohsen Moayyed,1 and David R. Lentz2

1Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, 5166616471, Tabriz, Iran
2Department of Earth Sciences, University of New Brunswick, Fredericton, NB E3B 5A3, Canada

*Corresponding author: e-mail, p.moshefi@tabrizu.ac.ir

The Sungun porphyry copper deposit (northwestern Iran), a typical high-grade Cu deposit, is situated in the Cenozoic Urumieh-Dokhtar magmatic arc, which is a part of the Tethyan metallogenic belt. Mineralized overlapping alteration zones and a barren, post-ore quartz diorite dike were sampled. Based on the optical features, backscattered electron microprobe images, and compositional criteria, 45 biotites are classified as least-altered magmatic biotites (LA-Mbt), least-altered equilibrated magmatic biotites (LA-Eq Mbt), equilibrated magmatic biotites (Eq-Mbt), secondary hydrothermal biotites (S-Hbt) of the mineralized zone, and least-altered magmatic biotites (LA-Mbt) of the barren dike. Biotite types plot in the field of calc-alkaline orogenic suites and fall within the compositional field between eastonite and phlogopite, but LA-Mbt of the mineralized zone are richer in Mg than LA-Mbt of the barren dike. The LA-Mbt of the mineralized zone show a high level of TiO2 (3.92–4.33 wt %), in comparison to LA-Mbt of the barren dike (ave. 4.17 wt %) and S-Hbt (0.27–3.00 wt %) of the mineralized zone. The highest amount of Na2O (0.39–0.58 wt %) is characteristic of the barren dike (LA-Mbt) compared to other types of biotite and especially to the LA-Mbt of the mineralized zone (0.08–0.15 wt %). The SiO2 in LA-Mbt of the barren dike (ave. 36 wt %) is lower than that of LA-Mbt of the mineralized zone (ave. 37.00 wt %). Having the highest level of MnO (0.11–0.18 wt %) is another characteristic feature of LA-Mbt of the barren dike compared to LA-Mbt of the mineralized zone (0.03–0.14 wt %). S-Hbt of the mineralized zone have the lowest level of MnO (wt %). In this study, SO3 of biotite types has been determined, which is complex to interpret. A plot of SO3 vs. Cu in biotites from overlapping alteration zone samples indicates that the phyllic-high/argillic-low has the higher values for Cu (ave. 1.12 wt %) and the lower ones for SO3 (ave. 0.04 wt %) than the potassic-high/phyllic-low, with 0.86 wt % Cu and 0.06 wt % SO3, on average; this can be related to the formation of sulfide and magnetite in these zones, respectively. According to F and Cl contents, intercept values of F, Cl, F/Cl, and evidence of hydrothermal fluid halogen fugacity ratios of biotite types at Sungun Cu porphyry deposit, chlorine is an indicator for postmagmatic hydrothermal processes and fluorine is a diagnostic factor for vectoring to mineralized and barren porphyry Cu systems.

Calculated temperatures for LA-Mbt, LA-Eq Mbt, Eq-Mbt, and S-Hbt of the mineralized zones and the LA-Mbt of the barren dike range from 739° to 794°C, 736° to 798°C, 717° to 792°C, 581° to 693°C, and 764° to 770°C, respectively. The calculated oxygen fugacities for LA-Mbt of the mineralized zones range from 10 to 15.4 to 10 to 13.8, which lies within the range of typical oxygen fugacities for porphyry mineralization (log \(f_{O2} \) > FMQ +2), where FMQ is the fayalite-magnetite-quartz oxygen buffer. Based on the study carried out, mineral chemistry of biotite can be efficient in the prediction of the mineralization potential of intrusive bodies.