GEOLGY AND GEOCHEMISTRY OF EPITHERMAL SYSTEMS

CONTENTS

The Geothermal Framework for Epithermal Deposits
R.W. Henley

A Practical Guide to the Thermodynamics of Geothermal Fluids Hydrothermal Ore Deposits
R.W. Henley and K.L. Brown

The Behavior of Silica in Hydrothermal Solutions
R.O. Fournier

Carbonate Transport and Deposition in the Epithermal Environment
R.O. Fournier

Fluid Inclusion Systematics in Epithermal Systems
R.J. Bodnar, T.J. Reynolds, and C.A. Kuehn

Light Stable-Isotope Systematics in the Epithermal Environment
C.W. Field and R.H. Fifarek

Geologic, Mineralogic, and Geochemical Characteristics of Volcanic-Hosted Epithermal Precious-Metal Deposits
D.O. Hayba, P.M. Bethke, P. Heald, and N.K. Foley

Geologic Characteristics of Sediment-Hosted, Disseminated Precious-Metal Deposits in the Western United States
W.C. Bagby and B.R. Berger

Relationship of Trace-Element Patterns to Alteration and Morphology in Epithermal Precious-Metal Deposits
M.L. Silberman and B.R. Berger

Relationship of Trace-Element Patterns to Geology in Hot-Spring Type Precious-Metal Deposits
B.R. Berger and M.L. Silberman

Boiling, Cooling, and Oxidation in Epithermal Systems: A Numerical Modeling Approach
M.H. Reed and N. Spycher

Using Geological Information to Develop Exploration Strategies for Epithermal Deposits
S.S. Adams

Editors
B.R. Berger and P.M. Bethke

SOCIETY OF ECONOMIC GEOLOGISTS, INC.
The Authors:

Samuel S. Adams
3030 Third Street
Boulder, CO 80302

William C. Bagby
Branch of Western Mineral Resources
U.S. Geological Survey
MS 901
345 Middlefield Road
Menlo Park, CA 94025

B. R. Berger
Branch of Exploration Geochemistry
U.S. Geological Survey
MS 973
Box 25046, Federal Center
Denver, CO 80225-0046

Philip M. Bethke
Branch of Resource Analysis
U.S. Geological Survey
MS 959, National Center
Reston, VA 22092

R. J. Bodnar
Department of Geological Sciences
Virginia Polytechnic Institute and State University
Blacksburg, VA 20461

K. L. Brown
Chemistry Division
D.S.I.R., Private Bag
Taupo
New Zealand

Cyrus W. Field
Department of Geology
Oregon State University
Corvallis, OR 97331-5506

Richard H. Fifarek
Department of Geology
Southern Illinois University
Carbondale, IL 62901

N. K. Foley
Branch of Resource Analysis
U.S. Geological Survey
MS 959, National Center
Reston, VA 22092

Robert O. Fournier
Branch of Igneous and Geothermal Processes
U.S. Geological Survey
MS 910
345 Middlefield Road
Menlo Park, CA 94025

Daniel O. Hayba
Branch of Resource Analysis
U.S. Geological Survey
MS 959, National Center
Reston, VA 22092

Pamela Heald
Branch of Resource Analysis
U.S. Geological Survey
MS 959, National Center
Reston, VA 22092

R. W. Henley
Chemistry Division
D.S.I.R., Private Bag
Taupo
New Zealand

C. A. Kuehn
Department of Geosciences
The Pennsylvania State University
University Park, PA 16802

Mark H. Reed
Department of Geology
University of Oregon
Eugene, OR 97403

T. J. Reynolds
FLUID, Inc.
P.O. Box 6873
Denver, CO 80206

M. L. Silberman
Branch of Exploration Geochemistry
U.S. Geological Survey
MS 912
Box 25046, Federal Center
Denver, CO 80225-0046

N. Spycher
Department of Geology
University of Oregon
Eugene, OR 97403
GEOLOGY & GEOCHEMISTRY OF EPITHERMAL SYSTEMS

CONTENTS

FOREWORD ... xi
PREFACE .. xi
BIOGRAPHIES .. xvi

CHAPTER 1
THE GEOTHERMAL FRAMEWORK OF EPITHERMAL DEPOSITS
R. W. Henley

INTRODUCTION .. 1
HYDROTHERMAL SYSTEMS IN GENERAL 1
 Collision-Related Amagmatic Hydrothermal Systems
 Terrestrial Magma-Related Hydrothermal Systems
TERRESTRIAL MAGMATIC-HYDROTHERMAL SYSTEMS 4
 Large Scale Structure
 Natural Discharges
 Hydrothermal Eruption Vents
 Heat and Mass Flow in Geothermal Systems
CHEMISTRY OF GEOTHERMAL DISCHARGES 11
EPITHERMAL ORE-FORMING SYSTEMS 12
 Requirements for Ore Deposition
 Chemistry of Systems Responsible for Ore Formation
 Chemical and Physical Processes in Ore Formation
 Host-Rock Relations
SUMMARY ... 19
EPILOGUE ... 21
ACKNOWLEDGMENTS ... 21
REFERENCES .. 21

CHAPTER 2
A PRACTICAL GUIDE TO THE THERMODYNAMICS OF GEOTHERMAL FLUIDS AND HYDROTHERMAL ORE DEPOSITS
R. W. Henley and K. L. Brown

INTRODUCTION .. 25
GEOLOGICAL CHARACTERISTICS OF THE BROADLANDS GEOTHERMAL SYSTEM 25
FLUID CHEMISTRY .. 26
CHAPTER 3

THE BEHAVIOR OF SILICA IN HYDROTHERMAL SOLUTIONS

R. O. Fournier

INTRODUCTION ... 45
SOLUBILITIES OF SILICA MINERALS 45
THE BEHAVIOR OF DISSOLVED SILICA IN HOT-SPRING SYSTEMS 46
ALKALINE WATERS ... 48
ACID WATERS .. 50
REACTION WITH GLASS .. 51
AMORPHOUS SILICA-CHALCEDONY RELATIONS 51
SPECULATIONS REGARDING SOME TEXTURES OF QUARTZ 51
Jasperoid and Massive Replacement of Limestone by Silica
Quartz Solubility at High Temperatures

CONCLUSIONS .. 55
ACKNOWLEDGMENTS .. 56
REFERENCES .. 56
APPENDIX ... 60
CHAPTER 7

GEOLOGIC, MINERALOGIC, AND GEOCHEMICAL CHARACTERISTICS OF VOLCANIC-HOSTED EPITHERMAL PRECIOUS-METAL DEPOSITS

D. O. Hayba, P. M. Bethke, P. Heald, and N. K. Foley

INTRODUCTION

Summary of the Characteristics of Volcanic-Hosted Epithermal Ore Deposits

Characteristics of Adularia-Sericite-Type Deposits

Characteristics of Acid-Sulfate-Type Deposits

Summary of Characteristics

THE ADULARIA-SERICITE ENVIRONMENT: CREED AS AN EXAMPLE

Creede as an Exemplar

Summary of Important Studies

Geologic and Mineralogic Characteristics

Geochemical Environment

Hydrologic Environment

Boiling and Mixing in the Ore Zone

Summary of Creede Mineralization

THE ACID-SULFATE ENVIRONMENT: SUMMITVILLE AS AN EXAMPLE

Geologic and Mineralogic Characteristics

Geochemical Environment

Summary of Summitville Mineralization

GEOTHERMAL INTERPRETATION OF VOLCANIC-HOSTED EPITHERMAL DEPOSITS

Adularia-Sericite Deposits

Acid-Sulfate Deposits

MECHANISMS OF ACID-SULFATE ALTERATION

ACKNOWLEDGMENTS

REFERENCES

CHAPTER 8

GEOLOGIC CHARACTERISTICS OF SEDIMENT-HOSTED, DISSEMINATED PRECIOUS-METAL DEPOSITS IN THE WESTERN UNITED STATES

W. C. Bagby and B. R. Berger

INTRODUCTION

Classification

Regional Geologic Characteristics of Deposits in Mineral Trends and Isolated Deposits

The Getchell Trend

The Carlin Trend
The Cortez Trend
Isolated Deposits

GEOLOGIC CHARACTERISTICS OF THREE END-MEMBER, SEDIMENT-HOSTED, DISSEMINATED PRECIOUS-METAL DEPOSITS ... 183

Carlin
Taylor
Preble

GENERAL ASPECTS OF TRACE ELEMENT AND STABLE-ISOTOPE GEOCHEMISTRY ... 189

SUMMARY OF GEOLOGIC CHARACTERISTICS ... 192

Regional and District Scale
Deposit Scale

ENVIRONMENT OF FORMATION ... 195

EXPLORATION APPLICATION ... 195

INFLUENCE OF GEOLOGIC CHARACTERISTICS ON MINING ... 196

Grade and Tonnage
Mineability

REFERENCES ... 199

CHAPTER 9
RELATIONSHIP OF TRACE-ELEMENT PATTERNS TO ALTERATION AND MORPHOLOGY IN EPITHERMAL PRECIOUS-METAL DEPOSITS
M. L. Silberman and B. R. Berger

INTRODUCTION ... 203

GEOTHERMAL SYSTEMS ... 204

Morphology and Characteristics
Alteration Patterns
Geochemical Zones

EPITHERMAL ORE DEPOSITS ... 208

Morphology and Characteristics
Alteration Patterns

NATURE OF FLUIDS INVOLVED IN GEOTHERMAL SYSTEMS AND EPITHERMAL ORE DEPOSITS ... 213

TIMING ... 214

GEOCHEMICAL ZONING IN EPITHERMAL DEPOSITS ... 214

BODIE MINING DISTRICT ... 215

Large-scale Vertical Zoning at Bodie Bluff--The Big Picture
Detailed Lateral Zoning

PARAMOUNT MINING DISTRICT--VERTICAL ZONING ... 224

SUMMARY ... 227
ACKNOWLEDGMENTS ... 228
REFERENCES ... 230

CHAPTER 10
RELATIONSHIPS OF TRACE-ELEMENT PATTERNS TO GEOLOGY
IN HOT-SPRING-TYPE PRECIOUS-METAL DEPOSITS
B. R. Berger and M. L. Silberman

INTRODUCTION ... 233
CONTROLS ON TRACE-ELEMENT PATTERNS .. 233
TRACE-ELEMENT PATTERNS IN STUDIED DEPOSITS 235

Hasbrouck Mountain, Nevada
Round Mountain, Nevada

DISCUSSION ... 245
REFERENCES ... 246

CHAPTER 11
BOILING, COOLING, AND OXIDATION IN EPITHERMAL SYSTEMS:
A NUMERICAL MODELING APPROACH
M. H. Reed and N. F. Spyher

INTRODUCTION ... 249
BOILING ... 249
BOILING RESULTS ... 252
DISCUSSION OF BOILING AND COOLING ... 252

Sulfide and Carbonate Mineral Precipitation
Precipitation of Silicates
Boiling Without Fractionation and Cooling Only

SUPER- AND SUB-ISOENTHALPIC BOILING 258
BOILING AND GOLD PRECIPITATION ... 261

THE HOT-SPRING ENVIRONMENT ... 262

Condensation of the Boiled Gas
Oxidation of Gases to Produce Acid-Sulfate Waters
Reaction of Gases with Meteoric Ground Water
Gold Precipitation from Mixing of Acid-Sulfate Water
with Boiled Aqueous Phase
Gold Precipitation from Mixing of Oxygenated Ground Water
with Boiled Aqueous Phase

SUMMARY ... 269
ACKNOWLEDGMENTS ... 270
REFERENCES ... 270
CHAPTER 12

USING GEOLOGICAL INFORMATION TO DEVELOP EXPLORATION STRATEGIES
FOR EPITHERMAL DEPOSITS

S. S. Adams

INTRODUCTION .. 273

SOME CONSIDERATIONS IN THE USE OF GEOLOGICAL INFORMATION
IN EXPLORATION .. 273

STRATEGIC FACTORS .. 274

Organizational Objectives
Commodity Prices
Financial Resources
Exploration Organization
Regulations and Land Availability
Competitor Activity
Previous Exploration
Geologic Information
Exploration Methods
Opportunities
Risk

HUMAN FACTORS .. 279

Personal Objectives
Education and Training
Problem Solving
Intuition and Creativity
Uncertainty
Aversion to Loss

DEVELOPMENT OF MINERAL-DEPOSIT MODELS 282

Organization of Geologic Information
Model Terminology
Level of Model Development

DATA-PROCESS-CRITERIA MODEL 286

Definition of a Mineral-Deposit Type
Compilation of Analog Deposits
Selection of Geologic Data
Data-Process Linking
Identification of Formation Processes
Evaluation of Data-Process Links
Selection of Diagnostic Criteria
Evaluation of Data-Process-Criteria Model
Application of Data-Process-Criteria Model to Exploration
Summary of Data-Process-Criteria Model

CONCLUSIONS .. 296

REFERENCES .. 297

TABLE OF CONVERSION FACTORS Inside Back Cover
FOREWORD

Geology and Geochemistry of Epithermal Systems—Volume 2 of Reviews in Economic Geology—was created to accompany a Society of Economic Geologists (SEG) short course of the same name that was given in October, 1985, prior to the annual meetings of the Geological Society of America and Associated Societies in Orlando, Florida. As was the case with Volume 1, the final published version of Volume 2 unfortunately postdates the short course by some months.

Geology and Geochemistry of Epithermal Systems presents a synthesis of the current understanding of the processes responsible for the concentration of metals (especially gold and silver) in near-surface environments, provides an overview of the systematics of the most important approaches to the study of epithermal ores and processes, and summarizes the geology of both sediment-hosted and volcanic-hosted epithermal precious-metal deposits.

After the volume editors, the most significant contributors to the production of this volume were the members of the Editorial Support Group, Branch of Exploration Geochemistry, U.S. Geological Survey, Denver, Colorado. These ladies, Marilyn A. Billone, Candace A. Vassalluzzo, and especially Pamela S. Detra and Dorothy B. Wesson, accomplished the long, arduous, and often frustrating job of assembling, editing, and formatting the book with a uniformly high level of professionalism and good cheer. Their efforts are gratefully acknowledged. Carol Hjellming of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR) editing staff checked, balanced, and helped interpret the chemical equations; Lynne McNeil (NMBMMR) formatted the cutlines. Lastly, I wish to express my continuing appreciation to the New Mexico Bureau of Mines and Mineral Resources and its Director, Frank Kotlowski, who provide the Series Editor with time, space, and encouragement.

James M. Robertson
Series Editor
Socorro, NM
March, 1986
PREFACE

In a speech on May 10, 1911, before the Geological Society of Washington, Waldemar Lindgren described his systematic classification of all types of mineral deposits. One of his categories included deposits related to intrusive and eruptive igneous rocks that form veins at shallow depths that contain open-cavity filling textures and that have been a primary source of "bonanza" grades of gold and silver—the epithermal deposits. Historically, most of the ores in epithermal systems have been mined from quartz veins, breccias, or disseminations that are associated with non-marine volcanic rocks. Open-space filling textures and structures are common—comb structure, crustification, symmetrical banding, and crystal-lined vugs. Ore minerals include native gold, native silver, electrum, argentite, sulfosalts, tellurides, and selenides and often the common sulfides sphalerite, galena, and chalcopyrite. Common gangue minerals are quartz, adularia, calcite, barite, rhodochrosite, and fluorite. Alteration is commonly widespread in epithermal systems, particularly in the upper portions of the vein systems; among the alteration phases are quartz, adularia, illite, chlorite, alunite, and kaolinite.

Lindgren (1928) recognized the difficulty of developing a rigid subsidiary classification scheme for epithermal deposits; he separated them into six categories:

1. Gold deposits
2. Argentite-gold deposits
3. Argentite deposits
4. Gold selenide deposits
5. Gold telluride deposits
6. Gold telluride deposits with alunite

Nolan (1933) and Ferguson (1929) felt that few of these six characteristics were restricted enough to be diagnostic and proposed only two classes of epithermal systems based on the weight ratio of gold to silver, silver-gold, and gold-silver. Based on his experience with deposits in Nevada, Ferguson (1929) found that there is a bimodal distribution of gold-silver ratios, and Nolan (1933) felt that the bimodality was due to genetic processes.

For the silver-gold deposits, Nolan (1933) noticed that through-going fault fissures control the ore and felt that this implies a deep origin for the source of the metals. Nolan (1933) also noted that the precious-metal ores are very commonly sharply limited above and below by approximately parallel surfaces referred to as the "ore horizon." He suggested that these limits are related to temperature. Base metals tend to increase at and below the base of the lower surface of the precious-metal ore. Figure 1 is a longitudinal, vertical projection of the Last Chance—Confidence silver-gold vein in the Mogollon mining district, New Mexico (Ferguson, 1927). Banded quartz vein is continuous along strike with ore grade material occurring in specific masses (stippled areas) in the vein. The tops and bottoms of the silver-rich ore bodies describe near parallel surfaces referred to as the "ore horizon."

Figure P.1. Vertical, longitudinal projection of the Confidence—Last Chance vein in the Mogollon mining district, New Mexico (Ferguson, 1927). Banded quartz vein is continuous along strike with ore grade material occurring in specific masses (stippled areas) in the vein. The tops and bottoms of the silver-rich ore bodies describe near parallel surfaces referred to as the "ore horizon."
Mexico (Ferguson, 1927) illustrating the ore horizons, the shape of ore bodies, and the typical distribution of ore grades within a continuous banded quartz-adularia-sericite vein. Burbank (1933) reported that base metals appear to be more abundant in silver-gold deposits in regions of sedimentary rocks with overlying volcanic rocks and in thick, volcanic sequences with a long history of volcanic activity. In contrast to the silver-gold deposits, Nolan (1933) noted that gold-silver deposits are commonly within or close to small, shallow intrusive bodies and that the ore-controlling fracture systems are frequently more discontinuous than those associated with silver-gold deposits. The gold-silver ores are also more irregular in distribution than the silver-gold ores. Nolan felt that this irregularity may be related to the complex thermal regimes in these types of systems due to the shallow intrusive activity. Figure 2a shows a series of plan views of the January mine, Goldfield mining district, Nevada and a cross section through the January shaft (Ransome, 1909) showing the relationships of ore to quartz-alunite-kaolinite replaced wallrock ("ledge matter") and the host rocks. Figure 2b shows two cross sections from Ransome (1909, p. 154) of the Combination mine in Goldfield illustrating the irregular vertical distribution of bonanza-grade ore masses within the "ledge matter." Also, the ore bodies were not persistent along strike.

Although Waldemar Lindgren (1928) recognized the correlation between epithermal systems and active geothermal systems, it was Donald E. White (1955, 1981) who championed the detailed study of active systems and the application of the results and concepts derived from these studies to epithermal ore deposits. The impact of White's leadership in the study of hydrothermal systems, in general, and epithermal systems, in particular, was recognized by the Society of Economic Geologists when it held a symposium in

![Figure P.2](image-url)
his honor in February, 1984 entitled: Geothermal Systems and Ore Deposits. It clearly emphasized the value of using active geothermal areas as models of fossil, ore-forming hydrothermal systems.

Thus, the evolution of understanding of the geology and genesis of epithermal precious-metal deposits has followed a pathway from the early, vividly descriptive studies of mining districts such as the Comstock Lode, Nevada (Becker, 1882), Cripple Creek, Colorado (Lindgren and Ransome, 1906), and Waihi, New Zealand (Bell and Fraser, 1912) to the later, topical studies on structure (Wisser, 1960), alteration (Hemley and Jones, 1964), stable isotopes (Taylor, 1973), and fluid chemistry (Barton et al., 1977). The most recent research on epithermal deposits has built on these past studies and has emphasized the thermal and compositional roles of volcanic rock terranes; the genesis, significance, and pattern of alteration mineralogy; the sources of the geothermal fluids and the paleohydrology of the systems; and, the chemical conditions surrounding the deposition of the ore minerals.

The present volume is an attempt to provide a synthesis of the current state of geological and geochemical knowledge of epithermal precious-metal systems. It follows on, and should be used in conjunction with, the first volume in this series: Mineral-Fluid Equilibria in Hydrothermal Systems by Henley et al. (1984). In the present volume we have attempted to provide a framework for understanding the systematics of controls on fluid compositions and of metal and gangue transport and deposition. The structure, dynamics, and transport properties of active geothermal systems are used as a starting point. With active systems as a reference, the evolution of fluid compositions and the constraints on metal and gangue transport and deposition in the epithermal environment are explored. The systematics of fluid inclusion and light stable-isotope applications is developed because these two approaches have been so useful in the development of our understanding of epithermal processes. The importance of boiling, cooling, and oxidation in the fluid evolution of epithermal systems is evaluated through a numerical modelling approach. With the foregoing as background, the observational base and its interpretation for epithermal ore deposits in continental volcanic and sedimentary terranes is explored through summaries of the geologic, mineralogical, and geochemical characteristics of, and trace-element distributions in, some well-studied epithermal ore deposits. The final chapter is devoted to the use of our understanding of epithermal systems in the development of exploration strategies.

This volume does not attempt to be the final word on epithermal ore deposits, nor does it claim comprehensive treatment. The absence of a chapter on the hydrology of epithermal systems documents the fact that our current understanding of this aspect is woefully inadequate. It does not reflect a lack of recognition of the importance of hydrologic controls. Similarly, this volume focuses on volcanic- and sediment-hosted epithermal deposits in the cordillera of western North America, particularly the United States. It does not treat aspects of alkaline- or basaltic-rock related deposits such as Cripple Creek, Colorado, and Vatapoula, Fiji, nor does it treat the relationship of epithermal systems to deeper hydrothermal systems responsible for the formation of porphyry-type deposits. Again our reason is the lack of an adequate observational base. Our primary purpose in organizing this volume and the related Short Course has been to stimulate critical studies to improve our current understanding of epithermal deposits and processes rather than to document it. Perhaps our omissions will serve this purpose equally as well as our inclusions.

REFERENCES

Wisser, E., 1960, Relation of ore deposition to doming in the North American Cordillera: Geological Society of America, Memoir 77.
ACKNOWLEDGMENTS

As is true for any effort of the scope of this volume, many people in addition to the editors played key roles along the road to final publication. The time and effort expended by each author is greatly appreciated as are the contributions of the large cadre of individual reviewers who have offered insights and alternative perspectives to the authors. Technical support to the editors including manuscript preparation and revision, final formatting for publication, and badgering of both editors and authors was provided by the Editorial Support Group, Branch of Exploration Geochemistry, U.S. Geological Survey. Within this group we would especially like to thank Pamela Detra, Dorothy Wesson, Marilyn Billone, and Candy Vassalluzzo. An earlier version of this text was assembled for use at the Society of Economic Geologists Short Course by the Branch of Exploration Geochemistry Clerical Support Group. Finally, we would like to express appreciation for the patience of Jamie Robertson, Series Editor, Reviews in Economic Geology, and the support of the Society of Economic Geologists.

Byron R. Berger
Philip M. Bethke
Byron R. Berger received a B.A. degree in Economics/Geology from Occidental College in 1966 and a M.S. in Geology from the University of California, Los Angeles in 1975. He worked as a petroleum exploration geologist for Standard Oil Company of California from 1968-1970 and a minerals exploration geologist and research scientist for Continental Oil Company from 1971-1977. He joined the U.S. Geological Survey in 1977, and has been involved in research on epithermal precious-metal deposits and the relationship of magma genesis to ore genesis. He is currently the Chief of the Branch of Exploration Geochemistry. He is an adjunct assistant professor of geology in the Department of Geological Sciences at the University of Colorado, Boulder, where he has taught courses on the geology and geochemistry of epithermal ore deposits and exploration geochemistry. He is a member of several professional societies including the Geological Society of America and the American Geophysical Union.

Philip M. Bethke received a B.A. degree in Geology from Amherst College in 1952 and a Ph.D. in Geology (specialization in Mineralogy and Ore Deposits) from Columbia University in 1957. He was Assistant Professor of Geology at the Missouri School of Mines and Metallurgy (now the University of Missouri-Rolla) from 1955 to 1959. He joined the U.S. Geological Survey as a W.A.E. research geologist in 1957 and transferred to full time in 1959. His research has combined field and laboratory approaches to the study of hydrothermal ore deposits, particularly to epithermal vein systems. He has held several administrative positions with the U.S.G.S., most recently, Chief of the Branch of Experimental Geochemistry and Mineralogy. He is a member of several professional societies and is currently a Councillor of the Society of Economic Geologists. He has been active in the establishment of the SEG Short Course Series, and is currently Chairman of the Short Course Committee.

Samuel S. Adams received B.A. and M.A. degrees from Dartmouth College in 1959 and 1961, and a Ph.D. degree from Harvard University in 1967. From 1964 to 1977 he served as mine geologist, exploration geologist, exploration manager, and exploration vice president, employed by International Minerals and Chemical Corporation and then the Anaconda Company. During this period, his work emphasized sediment-hosted mineral deposits, particularly potash and uranium. Since 1977 he has served as a lecturer and consultant to industry, research organizations, and government agencies in the areas of mineral deposits, exploration, and resource assessment. His principal research interest is the representation of data and concepts for all types of mineral deposits in coherent and predictive models for exploration and resource studies. He is currently a Councillor of the Society of Economic Geologists and the Geological Society of America.

William C. Babgy received a Ph.D. degree in Earth Science from the University of California, Santa Cruz, in 1979 based on petrogenetic research of Tertiary volcanic rocks in the Sierra Madre Occidental, Mexico. His industry experience includes geologic evaluation of volcanic-hosted uranium in the McDermitt caldera complex, Nevada, and the bulk mineability potential of the amethyst silver vein system at Creede, Colorado. Industry research included development of an occurrence model for hot spring-related gold deposition based on the McLaughlin gold deposit in California. Present research interests are focused on the genetic aspects of sediment-hosted precious-metal deposits.

Robert J. Bodnar received an M.S. degree from the University of Arizona and a Ph.D. degree from The Pennsylvania State University and has been involved in various aspects of fluid-inclusion research for the past 10 years. He worked for 1 year as a research geochemist in the Ore Deposits Group of Chevron Oil Field Research Company and is currently an assistant professor in the Department of Geological Sciences at Virginia Polytechnic Institute and State University.

Kevin Brown received an M.S. degree in Chemistry in 1969 and a Ph.D. degree in Chemical Crystallography in 1972 from the University of Auckland, New Zealand. Except for a two-year sojourn at the E.T.H. in Zurich, he has worked at the Department of Scientific and Industrial Research, New Zealand. Initially in Wellington, his research interest centered around the crystal structures of organic reaction intermediates, but he gradually came down to earth with the crystal structures of some new epithermal minerals. In 1981, he shifted to the Geothermal Section at Wairakei, where his present research is concerned with experimental studies of mineral deposition from geothermal fluids.

Cyrus W. Field received a B.A. degree in Geology from Dartmouth College in 1956 and M.S. and Ph.D. degrees in Economic Geology, Geochemistry, and Petrology from Yale University in 1957 and 1961,
respective ly. He worked as an exploration geologist during the summers of 1955, 1956, and 1957 for the Oliver Iron Mining Company and Quebec Cartier Mining Company subsidiaries of the U.S. Steel Corporation, and served as a research geologist from 1960 to 1963 with the Bear Creek Mining Company division of Kennecott Copper Corporation. In 1963, he joined the faculty of Oregon State University where he is currently Professor of Geology. His research interests are largely concerned with the geology and geochemistry of hydrothermal mineral deposits, particularly the application of stable isotope and major-minor-trace element investigations to their genesis. He is a member of several professional societies and was Vice President of the Society of Economic Geologists in 1981.

RICHARD H. FIFAREK received a B.S. degree in Geology from the University of Washington in 1974, and M.S. and Ph.D. degrees in Geology (specialization in Economic Geology) from Oregon State University in 1982 and 1985, respectively. From 1974 to 1984, he worked periodically as an exploration geologist (4 yrs.) for several mining companies, as a research assistant/scientist (1 yr.) at the facilities of the Branch of Isotope Geology (Denver), U.S. Geological Survey, and as an instructor for Oregon State University. Presently, he is an assistant professor in the Department of Geology at Southern Illinois University where he teaches and conducts research in economic geology and isotope geochemistry. His research interests include integrated geologic (field) and geochemical investigation of massive sulfide and epithermal Au-Ag deposits, and modeling the isotopic evolution of fluids and rocks in hydrothermal systems.

NORA K. FOLEY received a B.S. degree in Geology and Mineralogy from the University of Michigan in 1978 and an M.S. degree in Geological Sciences from Virginia Polytechnic Institute and State University in 1980. She is currently working towards a doctoral degree in Geology through Virginia Polytechnic Institute and State University. Since 1980, she has been a research geologist at the U.S. Geological Survey in Reston, Virginia. Her research has included fluid-inclusion and isotopic studies of different types of ore deposits, including Ag- and base-metal-bearing, epithermal deposits, sediment-hosted, stratabound, Pb-Zn deposits, and Kuroko-type massive sulfides.

ROBERT O. FOURNIER received an A.B. degree in Geology in 1974 from Harvard College and a Ph.D. in Geology (specializing in Economic Geology, in general, and the Ely porphyry copper deposit, in particular) from the University of California at Berkeley in 1958. Since then, he has been a research geologist with the U.S. Geological Survey. His research interests have ranged from laboratory studies of mineral-water interactions at hydrothermal conditions appropriate for shallow levels in the crust, to field studies of presently active hydrothermal systems, including Yellowstone National Park, Coso and Long Valley, California, and Zunil, Guatemala. Experimental studies have emphasized solubilities of silica species in water and saline solutions. He has also been a leader in the development of several chemical geothermometers and mixing models that are now widely used in the exploration for geothermal resources. His present research focuses mainly on internally consistent chemical, isotopic, and hydrologic models of presently active hydrothermal systems. He has served on NATO committees to review geothermal energy development programs in Iceland, France, Greece, Portugal, and Turkey, and other committees to review geothermal exploration programs in Argentina and Thailand. He was Chairman of the Organizing Committee for the 1975 United Nations International Symposium on Geothermal Energy, and Chairman of the Technical Program Committee for the 1985 GRC International Symposium on Geothermal Energy. He now serves on panels to oversee geothermal developments in Costa Rica and Panama, and several U.S. Continental Scientific Drilling Committees. He is a member of several societies and has served on the Board of Directors of the Geochemical Society and the Geothermal Resources Council.

PAMELA HEALD received a B.A. degree in Geology in 1971 from Vassar College and an M.S. degree in Geology from George Washington University in 1977. She has been a research geologist at the U.S. Geological Survey since 1972. Her research has included spectral reflectance and structural studies in Nevada, with a focus on ore deposits, and mineralogical and geochemical studies to evaluate ore-forming processes in epithermal precious- and base-metal deposits.

RICHARD W. HENLEY received a B.S. degree in Geology in 1968 from the University of London and a Ph.D. degree in Geochemistry from The University of Manchester in 1971 following experimental studies of gold transport in hydrothermal solutions and the genesis of some Precambrian gold deposits. He was Lecturer in Economic Geology Memorial University of Otago, New Zealand, from 1971 to 1975, and at Memorial University, Newfoundland, until 1977. Research interests have focused on the mode of origin of a number of different types of ore deposits including post-metamorphic gold-tungsten veins, porphyry copper, massive sulfide, and placer gold deposits. He is currently with the Geothermal Chemistry Section of the Department of Scientific and Industrial Research at Wairakei, New Zealand, and a visiting lecturer at the Auckland Geothermal
Institute. Through 1983-84, he was a Fulbright Fellow and Guest Investigator at the U.S. Geological Survey and during that time produced Volume 1 of this Review series. His present research includes a number of isotope and chemical studies relating to the exploration and development of geothermal systems and geothermal implications for the origin of ore deposits.

C. A. KUEHN received an M.S. degree from the Pennsylvania State University and has 7 years of experience in exploration for sediment-hosted gold deposits. He is currently an NSF Research Assistant and Ph.D. candidate at the Pennsylvania State University and part-time employee of the U.S. Geological Survey working on the Carlin gold deposit.

MARK H. REED received a B.A. degree in Chemistry and in Geology from Carleton College in 1971 and M.A. and Ph.D. degrees in Geology at the University of California, Berkeley, in 1977. His Ph.D. research was on the geology and geochemistry of the massive sulfide deposits of the West Shasta District, California. From 1977 through 1979, he worked for the Anaconda Minerals Company at Butte, Montana. Since that time, he has taught and conducted research at the University of Oregon, where he is currently Associate Professor of Geology. His research has focused on alteration and metal zoning in the porphyry copper and large vein deposits at Butte and the geochemistry of hydrothermal alteration, metal transport, and ore deposition in massive sulfide and epithermal systems.

T. J. REYNOLDS received an M.S. degree from the University of Arizona and has been an exploration geologist specializing in the application of fluid inclusions to mineral exploration for the past 5 years.

MILES L. SILBERMAN received a B.S. degree from the City University of New York and M.S. and Ph.D. degrees from the University of Rochester, New York. He is a member of the Branch of Exploration Geochemistry of the U.S. Geological Survey, with current assignments to the Redding, California (CUSMAP) project, and to the study of the geochemistry of volcanic and metamorphic-hosted gold deposits in the western U.S. and northern Mexico. Previous work for the U.S.G.S. included geochronological, geochemical, and regional geological studies of precious- and base-metal deposits in the Great Basin and Alaska, and tectonic syntheses with particular focus on the relationships of hydrothermal precious-metal deposits to magmatic and metamorphic evolution. Between tours at the U.S.G.S., he designed and supervised exploration programs for precious-metal deposits in the Great Basin for the Anaconda Minerals Company.

NICOLAS F. SPYCHER received a B.S. degree in Earth Sciences in 1979 and a Dipl. es Sc. in Exploration Geophysics in 1980 from the University of Geneva, Switzerland. He is now a Ph.D. candidate and research assistant at the University of Oregon. His present research includes studies of the transport of arsenic and antimony in hydrothermal solutions, the mixing properties of geothermal gases, and the geochemical modeling of hot spring systems.