VOLCANIC-ASSOCIATED MASSIVE SULFIDE DEPOSITS: PROCESSES AND EXAMPLES IN MODERN AND ANCIENT SETTINGS

in cooperation with the Mineral Deposits Division (MDD) of the Geological Association of Canada (GAC)

CONTENTS

Classification of Volcanic-Associated Massive Sulfide Deposits Based on Host-Rock Composition C.T. Barrie and M.D. Hannington

Submarine Volcanic Processes, Deposits, and Environments Favorable for the Location of Volcanic-Associated Massive Sulfide Deposits H.L. Gibson, R.L. Morton, and G.J. Hudak

Structural Styles of Hydrothermal Discharge in Ophiolite / Sea-Floor Systems G.D. Harper

Geologic, Petrologic, and Geochemical Relationships between Magmatism and Massive Sulfide Mineralization along the Eastern Galapagos Spreading Center M.R. Perfit, W.I. Ridley, and I.R. Jonasson

Hydrothermal Alteration and Mineralization of Oceanic Crust: Mineralogy, Geochemistry, and Processes J.C. Alt

Stable Isotopes and Their Significance for Understanding the Genesis of Volcanic-Hosted Massive Sulfide Deposits: A Review D.L. Huston

Experimental and Theoretical Controls on the Composition of Mid-Ocean Ridge Hydrothermal Fluids W.E. Seyfried, Jr., K. Ding, M.E. Berardt, and X. Chen

The Giant Kidd Creek Volcanic-Associated Massive Sulfide Deposit, Abitibi Subprovince, Canada C.T. Barrie, M.D. Hannington, and W. Bleeker

Windy Craggy, Northwestern British Columbia: The World’s Largest Besshi-Type Deposit J.M. Peter and S.D. Scott

Genesis of Massive Sulfide Deposits at Sediment-Covered Spreading Centers W.D. Goodfellow, R.A. Zierenberg, and ODP Leg 169 Shipboard Science Party

The Precious Metal-Rich Eskay Creek Deposit, Northwestern British Columbia T. Roth, J.F.H. Thompson, and T.J. Barrett

Bimodal Siliciclastic Systems—The Case of The Iberian Pyrite Belt D. Carvalho, F.J.A.S. Barriga, and J. Munhá

Editors
C.T. Barrie and M.D. Hannington

SOCIETY OF ECONOMIC GEOLOGISTS, INC.
Reviews in Economic Geology, Vol. 8

Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings

in cooperation with the Mineral Deposits Division (MDD) of the Geological Association of Canada (GAC)

C.T. Barrie and M.D. Hannington, Editors

Additional copies of this publication can be obtained from

Society of Economic Geologists, Inc.
7811 Shaffer Parkway
Littleton, CO 80127
www.segweb.org

The Authors:

Jeff C. Alt
Department of Geological Sciences
University of Michigan
Ann Arbor, MI 48109
USA
Tel. +1.734.764.8380
Fax +1.734.765.4690
Email: jalt@umich.edu

Tim J. Barrett
Mineral Deposits Research Unit
Department of Geological Sciences
University of British Columbia
Vancouver, British Columbia V6T 2B4
Canada
Tel. +1.604.685.2335
Fax +1.604.685.2053
Email: barrett@rogers.wave.ca

C. Tucker Barrie
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
Canada
Tel. +1.613.947.2793
Fax +1.613.996.9820
Email: tubarrie@nrcan.gc.ca

Barrie and Associates
23 Euclid Avenue
Ottawa, Ontario K1S 2W2
Canada

Delfim de Carvalho
Inst. Geologico Mineiro and
Univ. Nova de Lisboa
Rua da Academia das Ciencias
19-2º 1200 Lisboa
Portugal
Tel. +351.1.346.3915
Fax +351.1.342.4609

Allan G. Galley
Geological Survey of Canada
601 Booth
Ottawa, Ontario K1A 0E8
Canada
Tel. +1.250.363.6866
Fax +1.250.363.6565
Email: agalley@nrcan.gc.ca

Harold Gibson
Department of Geology
Laurentian University
Sudbury, Ontario P3E 2C6
Canada
Tel. +1.705.675.1151 ext. 2337
Fax +1.705.675.4898
Email: hgibson@nickel.laurentian.ca

Wayne D. Goodfellow
Geological Survey of Canada
601 Booth
Ottawa, Ontario K1A 0E8
Canada
Tel./Fax +1.613.996.8163
Email: wgoodf@nrcan.gc.ca

Mark D. Hannington
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
Canada
Tel. +1.613.996.4865
Fax +1.613.996.9820
Email: mhanning@nrcan.gc.ca

Greg Harper
Department of Geological Sciences
SUNY at Albany
Albany, NY 12222
USA
Tel. +1.518.442.4476
Fax +1.518.442.5825
Email: gdh@csc.albany.edu

David L. Huston
Australian Geological Survey Organisation
GPO Box 378
Canberra, ACT 2601
Australia
Tel. +61.2.6249.9577
Fax +61.2.6249.9983
Email: dhhuston@agso.gov.au

Randolph A. Koski
U.S. Geological Survey MS901
345 Middlefield Road
Menlo Park, CA 94025-3591
USA
Tel. +1.650.329.5461
Fax +1.650.329.5491
Email: rkoski@usgs.gov

Wallace H. MacLean
Department of Earth and Planetary Sciences
McGill University
Montreal, Quebec H3A 2A7
Canada
Tel. +1.514.398.4888
Fax +1.514.398.4680
Email: whm@eps.mcgill.ca

Mike R. Perfit
Department of Geology
University of Florida
Gainesville, FL 32611
USA
Tel. +1.352.392.2128
Fax +1.352.392.9294
Email: perfit@geology.ufl.edu

Jan M. Peter
Geological Survey of Canada
601 Booth Street
Ottawa, Ontario K1A 0E8
Canada
Tel. +1.613.992.2376
Fax +1.613.996.9820
Email: jpeter@nrcan.gc.ca

Tina Roth
Mineral Deposit Research Unit
University of British Columbia
Vancouver, B.C. V6T 2B4
Canada
Tel. +1.604.822.6378
Fax +1.604.822.6088
Email: troth@eos.ubc.ca

Steven D. Scott
Department of Geology
University of Toronto
Toronto, Ontario M5S 1A4
Canada
Tel. +1.416.978.5424
Fax +1.416.978.3938
Email: scottsd@circon.geology.utoronto.ca

W. E. Seyfried, Jr.
Department of Geology and Geophysics
University of Minnesota
Minneapolis, MN 55455-0219
USA
Tel. +1.612.624.1333
Fax +1.612.625.3819
Email: umn_geo@darcy.geo.umn.edu

John F. H. Thompson
Teck Corporation
200 Burrard Street
Vancouver, B.C. V6C 3L9
Canada
Tel. +1.604.687.1117
Fax +1.604.640.5381
Email: john.thompson@teckcorp.ca

Robert A. Zierenberg
Department of Geology
University of California-Davis
Davis, CA 95616-8605
USA
Tel. +1.530.752.1863
Fax +1.530.752.0951
Email: zierenberg@geology.ucdavis.edu
Volcanic-associated massive sulfide (VMS) deposits are predominantly stratiform accumulations of sulfide minerals that precipitate from hydrothermal fluids at or below the sea floor in a wide range of ancient and modern geological settings. They occur within volcano-sedimentary stratigraphic successions, and are commonly coeval and coincident with volcanic rocks.

The understanding of ancient, land-based VMS deposits has been heavily influenced by the discovery and study of active, metal-precipitating hydrothermal vents on the sea floor. During the last three decades, excellent descriptions of sea-floor sulfides and related vent fluids and hydrothermal plumes have provided modern analogs for the land-based VMS deposits. Conversely, the geology and mineralogy of land-based deposits have provided insight into the plumbing systems and sulfide mineral paragenesis of sulfide deposits relevant to sea-floor hydrothermal systems. This volume capitalizes on the complementary nature of ancient, land-based VMS deposits and active, metal-precipitating hydrothermal systems on the sea floor, and draws equally from land-based and sea-floor VMS research.

The volume attempts to provide a balanced view of VMS systems, with descriptions of the processes involved in VMS formation and important examples representing a variety of VMS deposits and districts in modern and ancient settings. The contributions are divided into two parts, with a classification scheme given as an Introduction. In Part I, reviews of the most significant geological, physical, and chemical processes involved in the formation of land-based and sea-floor VMS deposits are presented. It is not meant to be a comprehensive review; rather, it presents a spectrum of current ideas based on research over the last 20 years. The papers have been written to be understood by a fourth-year undergraduate or graduate student, and will be a valuable reference for the practicing mineral deposits economic geologist.

The papers presented here stem from a short course held May 17–18, 1997, at Carleton University, Ottawa, Canada. The volume is co-sponsored by the Mineral Deposits Subdivision (MDD) of the Geological Association of Canada and the Society of Economic Geologists (SEG).

We thank the following scientists who have reviewed one or more of the manuscripts in this volume: Jean Bedard, Larry Cathles, Ron Cook, Brian Cousens, Al Coutts, Earl Davis, Udo Fehn, Al Galley, Katherine Gillis, Wayne Goodfellow, Peter Herzig, Dave Huston, Ian Jonasson, Maurice Lambert, Craig Leitch, Dave Lentz, John Lydon, Curtis Manley, Suzanne Paradis, Jan Peter, Mark Reed, Gwilliam Roberts, Steve Scott, Tom Setterfield, John Slack, Ed Spooner, Geoff Thurlow, Bob Turner, John Valley, Robert Varga, Anthony Williams-Jones. A number of other individuals have been helpful in the production of this volume, including Hannah Barrie, Alice Bouley, Dick Brown, Bob Cathro, Louise Corriveau, Al Galley, Steven and Daniel Hannington, Anne Labelle, Rachelle Lacroix, Lisa Laird, Mike Lesher, Dave Moore, Patsy Muntean, Kim Nguyen, Jennifer Shaw, John Thoms, Gary Sidder, Scott Swinden, and Dave Watkinson.
JEFFREY C. ALT received a B.S. degree in geology from the University of Michigan in 1975, and M.S. and Ph.D. (1984) degrees in marine geology and geophysics from the University of Miami. He was a research scientist at Washington University in St. Louis, Missouri, from 1985 to 1989, and is now at the University of Michigan. Alt has participated in numerous cruises of the Ocean Drilling Program; his research focused on sea-floor hydrothermal deposits and alteration and metamorphism of the ocean crust, with particular emphasis on understanding the geochemistry of sulfur in hydrothermal systems and subduction zones. Current interests include using trace element and isotopic analyses to understand fluid-rock interactions, and quantifying chemical and isotopic exchange between seawater and the ocean crust.

TIMOTHY J. BARRETT received B.Sc. (1972) and M.Sc. (1974) degrees in geology from the University of Toronto, and a D.Phil. from Oxford University (1979), with studies focusing on atypical ophiolites and deep-sea sediments in the northern Apennines. Following a NATO postdoctoral fellowship in Germany, where his work was related to the Deep Sea Drilling Project and on-land ophiolites, Barrett returned to the University of Toronto from 1982 to 1986; as a university research fellow, he continued work on these topics and participated in three oceanic research cruises to the Southern Explorer Ridge. During that period, his work also included study of Precambrian iron-formations and turbidites on the Canadian Shield. At McGill University (1986–1992), through IREM-MERI, he was involved in a study of volcanogenic massive sulfide (VMS) deposits in the Noranda camp in Quebec. From 1993 to 1996, Barrett was at the University of British Columbia with the Mineral Deposit Research Group, as research coordinator for a major project on VMS deposits of the British Columbia Cordillera. His current fields of interest are volcanic stratigraphy, litho-geochemistry, and hydrothermal alteration associated with VMS deposits, and sea-floor transport and deposition of metals. He is currently working as a consultant to the mining and exploration industry through Ore Systems Consulting (with partner W.H. MacLean).

C. TUCKER BARRIE (B.Sc., University of Michigan, 1979; M.Sc., University of Texas at Austin, 1984; Ph.D., University of Toronto, 1990) has worked as an economic geologist for Exxon Minerals, BP Resources Canada, Falconbridge, and Noranda, and is currently a visiting scientist at the Geological Survey of Canada. His interests are in igneous petrology and geochemistry as applied to ore-generating magmatic and hydrothermal systems, and in heat and fluid-flow modeling of hydrothermal systems.

DELFIM DE CARVALHO received a LIC. degree in geology from the University of Lisboa, Portugal, in 1965, and took postgraduate courses in economic geology at the University of Arizona, 1971 to 1972. He worked as an exploration geologist and research scientist in a team of the Servico Fomento Mineiro (1967–1978) which discovered or contributed to the discovery (Neves-Corvo) of several mineral deposits, especially in the Iberian pyrite belt. From 1978 to 1992 he was Director of the Geological Survey of Portugal. Carvalho’s research has been concerned largely with the geochemistry of sulfur and hydrothermal alteration of VMS-type deposits. He was national delegate in the EC committee for the research in mineral deposits and raw materials from 1989 to 1991. De Carvalho has taught economic geology as invited associate professor in the New University of Lisbon since 1995. He has been Vice-President of the EDM Group, which includes Somincor, since February 1998, and is a Fellow of the SEG and member of several other scientific societies.

ALAN G. GALLEY received a Ph.D. degree in geology from Carleton University, where his studies were concentrated on the Ansil volcanogenic massive sulfide deposit in the Archean Noranda camp. He joined the Mineral Resources Division of the Geological Survey of Canada in 1984, and has since been involved in the study of Precambrian epigenetic gold and modern/ancient VMS deposits. This has included work on VMS deposits in Cyprus and Oman. His present interest is the study of subvolcanic intrusive complexes in modern and ancient submarine environments and their relationship to VMS-related hydrothermal systems.

HAROLD L. GIBSON received his degrees from Queen’s University (B.Sc.) and Carleton University (M.Sc. and Ph.D.). After a successful 12-year career with several Canadian mining companies—most notably Corp. Falconbridge Copper and Falconbridge Limited—as an exploration, mine, and research geologist, he joined the Department of Earth Sciences at Laurentian University in 1990. Since then, Gibson and his students have undertaken research projects in Canada (Sudbury, Timmins, Noranda, and the Northwest Territories), Brazil, Ecuador, Peru, Oman, and Turkey. His research involves: (1) the study of VMS deposits, with particular emphasis on the volcanic environment and attendant alteration associated with “giant” VMS deposits and constraints on their formation and location; (2) development of architectural and depositional models and volcanic facies relevant to VMS and diamond exploration; (3) the petrology and igneous geochemistry of Precambrian and younger (Cretaceous and Tertiary) volcanic rocks; (4) subaqueous explosive volcanic processes, mechanisms, and deposits; and (5) the trace element geochemistry of gold and associated sulfide minerals in Archean, iron formation-hosted lode gold deposits.

WAYNE D. GOODFELLOW is a senior research scientist in the Mineral Resources Division, Geological Survey of Canada, and an adjunct professor in the Geology Department, University of Ottawa. He received his B.Sc. degree in geology from Mount Allison University and a Ph.D. from the University of New Brunswick. In 1975, Goodfellow joined the Geological Survey of Canada; since then, he has worked on projects in North America, Germany, Australia, France, and China. His research interests include the genesis of modern and ancient sea-floor hydrothermal sulfide
deposits, the genetic and temporal relationship between continental rifting, magmatism, and hydrothermal activity, the evolution of oceans through time, and the role of anoxic bottom waters in the formation of base metal deposits. He has authored or co-authored more than 200 papers, reviews, and technical reports, mostly in the area of economic geology and geochemistry. Goodfellow is currently the leader of the EXTECH-II multidisciplinary project on massive sulfide deposits in the Bathurst Mining Camp, New Brunswick.

MARK HANNINGTON received his M.Sc. degree (1986) and Ph.D. (1989) from the University of Toronto. He joined the Geological Survey of Canada as a postdoctoral fellow in 1989 and was transferred to a research scientist position in 1991. His research has combined the study of ancient volcanicogenic massive sulfide deposits with exploration of active hydrothermal systems on the modern sea floor. Hannington has participated on 14 research cruises to vent sites on Juan de Fuca Ridge, Mid-Atlantic Ridge, and island arcs of the western Pacific region; his work has focused on the mineralogy, geochemistry, and genesis of massive sulfide deposits on the sea floor. More recently, Hannington began investigating occurrences of shallow submarine hydrothermal systems with notable similarities to subaerial epithermal gold deposits. His land-based research has centered on volcanicogenic massive sulfide deposits in Canada, with the recent completion of a comprehensive, multidisciplinary study of the giant Kidd Creek deposit.

GREGORY HARPER received a B.S. degree with honors in geology from the University of Nebraska in 1975, and a Ph.D. degree from the University of California, Berkeley, in 1980. He has worked extensively on the Jurassic regional geology and tectonic evolution of the western United States, on oceanic faulting, hydrothermal metamorphism, serpen tinization, and igneous petrology of the Josephine ophiolite, and on the structure of ocean crust. Harper participated in Leg 148 of the Ocean Drilling Project, which had as its goal the deepening of the deepest hole in the ocean crust, Hole 504B. He has also worked on oceanic faults preserved in the northern Apennine ophiolites, as well as on a possible Archean ophiolite in the Wind River Range, Wyoming. His current research focuses on the structure, petrology, and tectonic origin of the Coast Range ophiolite, California-Oregon.

DAVID L. HUSTON is a research scientist at the Australian Geological Survey Organisation. He received his B.Sc. degree from the Colorado School of Mines in 1982, his M.Sc. degree from the University of Arizona in 1984, and his Ph.D. from the University of Tasmania in 1990. Prior to joining AGSO, he was a research fellow—first at the University of Tasmania, and then for the Geological Survey of Canada. Huston has studied VHMS deposits ranging in age from the Paleoarchean to the Permian, including deposits from most states in Australia and the provinces of Ontario and Manitoba in Canada. He has documented the geological setting, spatial and mineralogical distribution of gold and silver, hydrothermal geochemistry, alteration zonation, and isotope geochemistry of these deposits. He has authored more than 25 papers in refereed journals, most of which are on aspects of VHMS ore genesis.

RANDOLPH A. KOSKI is a geologist at the U.S. Geological Survey. He is currently chief scientist for the Mineral Resources Program, Western Region Team, located in Menlo Park, California. Since receiving his Ph.D. in geology from Stanford University in 1978, his primary research interests have been focused on hydrothermal systems and mineral deposits located on sediment-free (southern Juan de Fuca Ridge) and sediment-covered (Escanaba trough, southern Gorda Ridge) spreading axes in the northeast Pacific Ocean. The results of his detailed studies of the setting, composition, and growth processes of sulfide mounds and chimneys on the modern ocean floor have been applied to investigations of fossil analogs, including volcanicogenic massive sulfides in ophiolites in Oman, Cyprus, and the western United States.

WALLACE H. MACLEAN received a B.S. degree in geological engineering from the Colorado School of Mines in 1955, and his Ph.D. in economic geology from McGill University in 1968. His doctoral research and other early research was on experimental studies of immiscibility in magmatic sulfide and silicate liquids. Prior to beginning graduate studies, he worked as mine geologist at United Keno Hill Mines, Yukon, and as economic geologist for the government of Saudi Arabia. Shortly after receiving his Ph.D., Maclean joined the staff at McGill, where he taught economic geology, was Director of the MINEX (mineral exploration) graduate program for 25 years, and continued research on magmatic sulphides. He gradually added field-based research on Archean VMS at Noranda and Matagami in northern Quebec, specializing in mass changes during alteration and greenstone stratigraphy. Maclean retired from teaching in 1996.

MICHAEL PERFIT is a professor of geology, graduate coordinator, and a member of the honors faculty at the University of Florida. His scientific interests are in the fields of igneous petrology, island arc geochemistry, and mid-ocean ridge volcanism, mineralization, and tectonics. Perfit has participated in numerous oceanographic cruises and more than 40 dives in submersibles over the past 15 years. He received his B.S. degree in geology from St. Lawrence University in New York, a Ph.D. in geochemistry from Columbia University in 1977, and spent five years as a research fellow at the Australian National University in Canberra. He has been a member of the U.S. Science Advisory Committee, the Lithosphere Panel, and the National Science Foundation review panel for Ocean Sciences. Perfit also served as chairman of the of the Deep Submergence Science Committee and Review Panel of the U.S. Science Support Program for the Division of Ocean Sciences, and is an associate editor for Reviews of Geophysics.
JAN M. PETER is an economic geologist in the Mineral Resources Division of the Geological Survey of Canada in Ottawa. He received his B.Sc. degree (honors) in geology from the University of British Columbia in 1983 and his M.Sc. and Ph.D. degrees from the University of Toronto in 1986 and 1991, respectively. His graduate training focused on modern and ancient sea-floor hydrothermal mineralization. Prior to joining the staff of the GSC in 1994, he was an NSERC postdoctoral fellow at the GSC. Peter’s research has dealt with the setting and depositional processes of modern sea-floor hydrothermal mineralization and the genesis of hydrothermal sediments (iron formations) related to massive sulfide deposits of the Bathurst lead-zinc mining camp in New Brunswick and their application in the exploration for concealed mineralization.

TINA ROTH received a B.Sc. degree from the University of Waterloo in 1989. After working as an exploration geologist, she earned an M.Sc. degree from the University of British Columbia in 1994, focusing on investigation of the 21A zone of the Eskay Creek deposit. Since then, Roth has been studying the orebodies at Eskay Creek as part of her Ph.D. research; for the past three and a half years, she has also been working at the Eskay Creek mine as a mine geologist, and more recently, as mine exploration geologist. In 1998, Roth resumed full-time study at the University of British Columbia.

STEVEN SCOTT is a professor of geology, Director of the Marine Geology Research Laboratory and, until May 1997, was chairman for nine years of Geological and Mining Engineering department, all at the University of Toronto. Scott also holds a cross appointment at the University of Western Brittany’s European University Institute of the Sea in Brest, France. He was educated at the University of Western Ontario (B.Sc. and M.Sc.) and at Pennsylvania State University (Ph.D.). Scott is a geologist/oceanographer specializing in base and precious metal massive sulfide deposits which he and his students have studied on five continents and on the bottom of three oceans. He was the first ore deposits geologist and first Canadian to witness “black smokers” on the ocean floor. Since 1982, he has participated in 21 oceanographic surface and submersible expeditions, many of them as chief scientist. His research team is currently carrying out projects in the western and northeastern Pacific Ocean. Scott has published more than 150 research papers and lectured in more than a dozen counties. Popularized accounts of his work have appeared in various media. He has been honored with several awards and distinguished lectureships. Steve is President of the Canadian Scientific Submersible Facility, which operates the Canadian ROPOS robotic submersible, and is President of the International Marine Minerals Society.

WILLIAM E. SEYFRIED, JR. received his B.Sc. degree in geology and chemistry from Bridgewater College, Bridgewater, Massachusetts, in 1970, an M.Sc. degree in geology from Louisiana State University in 1973, and a Ph.D. in geology from the University of Southern California in 1977. After completing a postdoctoral fellowship at Stanford University, he accepted a position in geochemistry at the University of Minnesota, where he is currently professor and head of the N.H. Winchell School of Earth Sciences. Throughout his career, Seyfried has emphasized the use of experiments and results of theoretical calculations to constrain hydrothermal alteration processes in natural geological systems. Experimental studies conducted by Seyfried and his colleagues at Minnesota have also been used to obtain thermodynamic data for aqueous species and mineral solid solutions, as well as to test and develop new sensors to monitor and measure redox properties and pH of aqueous fluids at elevated temperatures and pressures.

JOHN F. H. THOMPSON received a B.A. degree from Oxford in 1976 and M.Sc. (1978) and Ph.D. (1982) degrees from the University of Toronto. He worked in mineral exploration for 10 years, based in Australia, England, and the United States, and was involved in projects and area-selection worldwide. In 1991, he joined the Mineral Deposit Research Unit at the University of British Columbia as its director. Thompson managed and developed the joint industry-university research unit and was involved in research on Cordilleran metallogeny in North and South America, focused on porphyry, VMS, and high sulfidation gold deposits. In 1998, he took present position as chief geoscientist of Teck Corporation, based in Vancouver, B.C., Canada.

ROBERT A. ZIERENBERG received a B.A. degree in physical sciences from University of California, Berkeley, in 1974, and a Ph.D. in geology from University of Wisconsin, Madison, in 1983. His doctoral work was done with W.C. Shanks, III, focusing on the genesis of metalliferous deposits formed under a brine pool in the Atlantis II Deep, Red Sea. In 1984, he joined the Western Mineral Resources branch of the U.S. Geological Survey in Menlo Park, California. Research activities with the U.S. Geological Survey included investigations at several of the active sea-floor hydrothermal systems along Juan de Fuca-Gorda Ridge spreading centers and complementary studies of ancient massive sulfide deposits on land. In the fall of 1996, Zierenberg served as co-chief scientist for Ocean Drilling Program Leg 169, which drilled into active hydrothermal systems and massive sulfides at sediment-covered spreading centers in Middle Valley at the northern end of Juan de Fuca Ridge, and at Escanaba trough at the southern end of the Gorda Ridge. The fall of 1996 also marked a change in career, when he left the U.S. Geological Survey to join the faculty of the Department of Geology at the University of California, Davis, where he currently teaches and conducts research in the areas of water-rock interaction, the genesis of ore deposits and the environmental effects of mining, aqueous geochemistry and stable isotope geochemistry.
CONTENTS

Chapter 1—Classification of Volcanic-Associated Massive Sulfide Deposits Based on Host-Rock Composition
THE CLASSIFICATION SCHEME ... 2
HOST-ROCK COMPOSITION AND VMS METAL CONTENT:
THE USE OF PRIMITIVE MANTLE-NORMALIZED PLOTS 7
DEPOSIT SIZE: HOST ROCK PERMEABILITY,
DURATION OF HEAT SOURCE .. 9
TECTONIC SETTING, AND VMS DEPOSITS THROUGH
GEOLoGIC TIME ... 9
ACKNOWLEDGMENTS ... 10
REFERENCES .. 10

Chapter 2—Submarine Volcanic Processes, Deposits,
and Environments Favorable for the Location of
Volcanic-Associated Massive Sulfide Deposits
INTRODUCTION ... 13
SYNOVOLCANIC INTRUSIONS .. 13
EXPLOSIVE ERUPTIONS: PROCESSES AND CONSTRAINTS ... 15
EFFUSIVE ERUPTIONS: LAVA FLOWS AND DOMES 19
FELSIC LAVA FLOWS AND DOMES 24
PYROCLASTIC ROCKS ... 31
VOlCANIC CONTROLS ON VMS MINERALIZATION
AND ALTERATION .. 42
SUMMARY AND CONCLUSIONS .. 47
ACKNOWLEDGMENTS .. 48
REFERENCES .. 48

Chapter 3—Structural Styles of Hydrothermal Discharge
in Ophiolite/Sea-Floor Systems
INTRODUCTION ... 53
GEOLoGIC AND TECTONIC FRAMEWORK 53
INTERNAL STRUCTURE ... 54
HYDROTHERMAL METAMORPHISM 55
OCEANIC FAULTS AND FAULT-CONTROLLED DISCHARGE ... 61
MAGMATIC-AMAGMATIC CYCLES .. 64
ISOTOPIC EVOLUTION OF DISCHARGING FLUIDS 64
METALLIFEROUS SEDIMENTS AND OFF-AXIS DISCHARGE ... 65
SULFIDE MINERALIZATION .. 66
SIGNIFICANCE FOR VMS EXPLORATION 70
ACKNOWLEDGMENTS .. 71
REFERENCES .. 71

Chapter 4—Geologic, Petrologic, and Geochemical
Relationships between Magmatism and Massive Sulfide
Mineralization along the Eastern Galapagos Spreading Center
INTRODUCTION ... 75
GEOLoGIC SETTING .. 75
LAVA PETROLOGY, GEOCHEMISTRY, AND
SPATIAL MORPHOLOGY .. 77
THE GALAPAGOS FOSSIL HYDROTHERMAL FIELD 90
CONCLUSIONS ... 98
ACKNOWLEDGMENTS .. 98
REFERENCES .. 99

Chapter 5—Volcanic Sequences, Lithogeochemistry, and
Hydrothermal Alteration in Some Bimodal Volcanic-
Associated Massive Sulfide Systems
INTRODUCTION ... 101
LITHOGEOCHEMICAL TRENDS—METHODOLOGY 102
PHANEROZOIC VMS DEPOSITS .. 103
RIFTED MATURE ARC SETTINGS 109
INTEROCEANIC ISLAND-ARC SETTINGS 114
ARCHEAN VMS DEPOSITS IN EASTERN CANADA 117
DISCUSSION .. 124
ACKNOWLEDGMENTS .. 127
REFERENCES .. 127

Chapter 6—Hydrothermal Alteration and Mineralization
of Oceanic Crust: Mineralogy, Geochemistry, and
Processes
INTRODUCTION .. 133
THE STRUCTURE OF OCEANIC CRUST 133
PERMEABILITY OF OCEAN CRUST 134
HEAT SOURCES AND CONVECTION IN OCEAN CRUST 135
HYDROTHERMAL ALTERATION OF
OCEANIC CRUST AT RIDGE AXES .. 136
HYDROTHERMAL ALTERATION OF
OCEANIC CRUST ON RIDGE FLANKS 147
MINERALIZATION, HYDROTHERMAL ALTERATION,
AND SEA-FLOOR SPREADING ... 148
SUMMARY .. 149
ACKNOWLEDGMENTS .. 150
REFERENCES .. 150

Chapter 7—Stable Isotopes and Their Significance
for Understanding the Genesis of Volcanic-Hosted
Massive Sulfide Deposits: A Review
INTRODUCTION ... 157
STABLE ISOTOPE GEOCHEMISTRY: THE BASICS 157
VARIATIONS IN WHOLE-ROCK δ18O VALUES 158
VARIATIONS IN WHOLE-ROCK δD VALUES 165
QUARTZ PHENOCHRIST δ18O VALUES AND THE
PRODUCTIVITY OF VHMS DEPOSITS 165
δ18O AND δD VARIATIONS IN VOLCANOGENIC FLUIDS 165
δ18O AND δ18O VALUES OF CARBONATE MINERALS 168
δ13C VALUES OF REDUCED CARBON IN ROCKS
SURROUNDING VHMS DEPOSITS 169
δ34S VARIATIONS IN VHMS DEPOSITS 169
SUMMARY AND CONCLUSIONS ... 175
ACKNOWLEDGMENTS .. 175
REFERENCES .. 176

Chapter 8—Experimental and Theoretical Controls
on the Composition of Mid-Ocean Ridge
Hydrothermal Fluids
INTRODUCTION ... 181
GENERAL ASPECTS OF THE CHEMISTRY OF
MID-OCEAN RIDGE HOT SPRINGS VENT FLUIDS 181
CONSTRAINTS ON THE CHEMISTRY OF
HOT SPRING VENT FLUIDS ... 184
SUMMARY AND CONCLUSIONS ... 197
ACKNOWLEDGMENTS .. 198
REFERENCES .. 198

Chapter 9—Heat and Fluid Flow in Volcanic-Associated
Massive Sulfide-Forming Hydrothermal Systems
INTRODUCTION ... 201
Basic Concepts ...206
Examples of Heat and Fluid-Flow Models210
A Simple Example: A Shallow Mafic Sill in a Moderately Permeable Substrate213
Summary ...216
Acknowledgments ...216
References ...216

Chapter 10—Setting and Characteristics of Ophiolite-Hosted Volcanogenic Massive Sulfide Deposits
Introduction ..221
Tectonic Setting ..224
The Ophiolite Stratigraphic Section225
Spreading Rates, Sea-Floor Morphology, and Their Control on Hydrothermal Convention and Massive Sulfide Formation ...226
Distribution of Massive Sulfide Deposits227
Characteristics of Ophiolite-Hosted VMS Deposits ...229
Deposit Mineral Facies and Paragenesis232
Hydrothermal Alteration ...234
Conclusions ..241
References ...242

Chapter 11—The Giant Kidd Creek Volcanic-Associated Massive Sulfide Deposit, Abitibi Subprovince, Canada
Introduction ..247
Regional Setting and Structural Geology247
Stratigraphy, Geochronology, and Volcanology ..248
Host Rock Geochemistry and Petrogenesis252
Alteration ...255
Sulfide Mineralogy ..256
Genetic Considerations ...257
Remaining Questions ..257
Acknowledgments ...258
References ...258

Chapter 12—Windy Craggy, Northwestern British Columbia: The World’s Largest Besshi-Type Deposit
Introduction ..261
Tectonic Setting ..262
Geologic Setting ..262
Deposit Geology ..264
Mineralization ...267
Mineralogy and Mineral Associations271
Bulk Sulfide Chemistry ...273
Basalt Geochemistry ..274
Detrital and Chemical Sediment Geochemistry277
A Back-Arc Setting for the Windy Craggy Deposit ...281
Sources of Fluids and Conditions of Sulfide Deposition ..283
Hydrothermal Alteration ...287
Conclusions ..290
Acknowledgments ...291
References ...291

Chapter 13—Genesis of Massive Sulfide Deposits at Sediment-Covered Spreading Centers
Introduction ..297
Tectonic Setting ..297
Sedimentation ..297
Magmatism ...300
Heat Flow ...300
Hydrothermal Deposits ...301
Hydrothermal Alteration ...309
Hydrothermal System ..313
Summary and Conclusions320
Acknowledgments ...321
References ...321

Chapter 16—Bimodal Siliciclastic Systems—The Case of the Iberian Pyrite Belt
Introduction ..375
Geologic Setting ..376
Stratigraphy ..376
Tectonic Features and General Structure377
Magmatism ...378
Primary Igneous Geochemistry and Petrogenesis379
Regional Metamorphism ..385
Geotectonic Setting ..385
Sulfide Deposits ..386
Structural Control of Sulfide Deposits387
Ore Mineralogy and Geochemistry389
Isotope Geochemistry ..394
Hydrothermal Activity ...395
Metallogenesis ..400
Implications in Mineral Exploration401
Concluding Statement ..402
Acknowledgments ...402
References ...402