Southwest Pacific Rim
Gold-Copper Systems:
Structure, Alteration, and Mineralization

Editors
G.J. Corbett and T.M. Leach

SOCIETY OF ECONOMIC GEOLOGISTS, INC.
Special Publications of the Society of Economic Geologists

Special Publication, No. 6
Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization
G.J. Corbett and T.M. Leach, Editors

Graphic design and layout by
Type Communications
Westminster, CO

Printed by
Bookcrafters
613 E. Industrial Drive
Chelsea, MI 48118

Additional copies of this publication can be obtained from
Society of Economic Geologists, Inc.
7811 Shaffer Parkway
Littleton, CO 80127
www.segweb.org

SERIES PREFACE

This work by Greg J. Corbett and Terry M. Leach is the sixth volume in the Society of Economic Geologists Special Publications Series, which was begun by former editor Patricia A. Sheahan in 1992. No post-mortem on defunct mining areas, Corbett and Leach’s volume reflects current and emerging interests in an important part of the world.

For hundreds of years, miners have been drawn to the Pacific Rim but, until recently, large-scale production has been concentrated on the eastern fringe, on such important deposits as the epithermal precious metal ores of Mexico and the western United States and the classic porphyry copper deposits of the Cordillera. For various economic and political reasons, major exploration and development efforts are now being lured to gold and copper deposits in the southwest Pacific—to Fiji, Indonesia, Japan, Papua New Guinea, New Zealand, the Philippines, and the old standby, Australia. Interest in the southwest Pacific hinges largely on new economic discoveries such as those of the Gunung Bijih (Eertsberg) district which was featured in recent issues of Economic Geology and Geotimes. Readers will also be drawn by the scientific value of recently formed deposits, such as Tertiary to Quaternary porphyry coppers and by gold values at the Champagne Pool and Osorezan volcano which contain key information about ore genesis although they are unlikely to ever be mined.

Corbett and Leach’s review is a direct result of a popular and heavily-attended short course presented by SEG at its March 1996 meeting in Phoenix, Arizona, where William X. Chávez was general chair. Prior to and after the meeting, the authors also conducted short courses and workshops on the topic for mining clients, and at public venues over a four-year period at 29 other locations spread around the Pacific between Jakarta, Manila, Santiago, and Vancouver. A repeat of the Phoenix course was presented under SEG sponsorship in Lima in 1997. Capitalizing on their unique experiences on the road and in the field, Corbett and Leach provide readers with the latest data and interpretation on a wide range of deposits on the southwest Pacific Rim. They are to be congratulated for tackling such a complex topic and for sharing their perspectives with colleagues.

The Society is also indebted to Jeffrey W. Hedenquist of the Geological Survey of Japan, and John Thompson of the University of British Columbia, for intensive formal reviews requested by the SEG Publications Committee. SEG Executive Director John A. Thoms and Lisa Laird deftly handled the production of SEG Special Publication 6, including final formatting and expediting the printing process.

Raymond M. Coveny, Jr.
Chair, SEG Publications Committee
UMKC, Kansas City, Missouri, USA

May 15, 1998
SOCIETY OF ECONOMIC GEOLOGISTS

Special Publication Number 6

TABLE OF CONTENTS

SUMMARY ... 1

CHAPTER 1: CHARACTERISTICS OF GOLD-COPPER HYDROTHERMAL SYSTEMS
- Introduction .. 5
- Exploration models ... 5
- Classification .. 5
- Fluid characteristics .. 8

CHAPTER 2: GEOTHERMAL ENVIRONMENT FOR SOUTHWEST PACIFIC RIM GOLD-COPPER SYSTEMS
- Settings of active hydrothermal-geothermal systems .. 11
- Continental and volcanic arc hydrothermal systems ... 12
- Characteristics of active Philippine intrusion-related hydrothermal systems 14
- Examples of active intrusion-related hydrothermal systems in the Philippines 19
- Conclusions .. 30

CHAPTER 3: STRUCTURE OF MAGMATIC ORE SYSTEMS
- Introduction .. 31
- Tectonic setting .. 31
- Major structures and porphyry systems .. 34
- Fracture patterns in magmatic arcs ... 36
- Changes in convergence ... 43
- Dilational ore environments .. 46
- Structures in time and space ... 50
- Shear sense indicators ... 51
- Porphyry- and intrusion-related fracture patterns ... 51
- Breccias ... 55
- Conclusion ... 67

CHAPTER 4: CONTROLS ON HYDROTHERMAL ALTERATION AND MINERALIZATION
- Introduction .. 69
- Temperature and pH controls on alteration mineralogy .. 69
- Alteration zones associated with ore systems ... 73
- Controls on the deposition of gangue mineral phases ... 73
- Controls on metal deposition ... 75
Chapter 5: Gold-Copper Systems in Porphyry Environments

- Porphyry copper-gold systems ... 83
- Skarn deposits .. 95
- Breccia-hosted gold deposits ... 98
- Porphyry-related alkaline gold-copper deposits 99

Chapter 6: High Sulfidation Gold-Copper Systems

- Characteristics .. 101
- High sulfidation systems formed as shoulders to porphyry intrusions 105
- Lithologically controlled high sulfidation gold-copper systems 111
- Structurally controlled high sulfidation gold-copper systems 117
- Composite structurally and lithologically controlled high sulfidation gold-copper systems .. 126
- Hybrid high-low sulfidation gold systems ... 130
- High sulfidation exhalative gold systems ... 135

Chapter 7: Porphyry-Related Low Sulfidation Gold Systems

- Classification .. 137
- Quartz-sulfide-gold ± copper systems .. 140
- Carbonate-base metal-gold systems .. 154
- Epithermal quartz-gold-silver systems ... 182
- Sediment-hosted replacement gold deposits ... 195

Chapter 8: Adularia-Sericite Epithermal Gold-Silver Systems

- Classification .. 201
- Examples .. 201
- Tectonic setting ... 202
- Structure .. 203
- Fluid characteristics and hydrothermal alteration 203
- Mineralization ... 204
- Types of epithermal gold-silver deposits ... 205

Chapter 9: Conclusions

- Introduction ... 215
- Gold-copper exploration models in project generation 215
- Gold-copper exploration models in reconnaissance prospecting 215
- Gold-copper exploration models in project development 216
- Flexible models .. 216

Acknowledgments .. 217
References cited .. 219
Appendix I. Mineral abbreviations .. 237
LIST OF FIGURES

3.1 Southwest Pacific Rim plate margins and gold-copper occurrences ... 2

1.1 Pacific Rim gold-copper mineralization models .. 6
1.2 Size vs grade of some southwest Pacific Rim copper-gold occurrences 8
1.3 Derivation of high and low sulfidation fluids .. 9

2.1 Active geothermal systems and hydrothermal ore deposits ... 11
2.2 Conceptual model silicic back-arc rift hydrothermal system ... 12
2.3 Conceptual model — volcanic arc hydrothermal system .. 14
2.4 Conceptual model — hydrology of shallow levels in geothermal systems 16
2.5 Philippines — geothermal fields, tectonic elements, mines, and prospects 18
2.6 Tongonan geothermal field — structural setting 20
2.7 Alto Peak — hydrological model ... 20
2.8 Biliran Island — thermal features ... 21
2.9 Biliran geothermal system — conceptual cross section ... 22
2.10 Tongonan geothermal field — conceptual cross section ... 22
2.11 Southern Negros geothermal field — setting .. 23
2.12 Southern Negros geothermal field — conceptual cross section ... 24
2.13 Bacon-Manito geothermal field — conceptual cross section, Bicol Region, Southern Leyte 25
2.14 Bacon-Manito geothermal field — draw down of cool low pH fluids 26
2.15 Geothermal systems in volcanic arc — Cordillera settings ... 27
2.16 Amakan geothermal system — North Davao, Mindanao ... 27
2.17 Daklan geothermal field — cross section ... 28
2.18 Acupan — geological setting .. 29
2.19 Baguio District, Philippines — structural elements and alteration ... 29

3.1 Pacific Rim plate boundaries .. 32
3.2 Convergence and fracture systems as oblique vs orthogonal .. 33
3.3 Southwest Pacific Rim porphyry copper-gold settings ... 35
3.4 Transfer structures and porphyry-related gold-copper mineralization in Papua New Guinea 35
3.5 Conjugate transfer structures, magmatism, and changes from orthogonal to oblique convergence ... 37
3.6 Dilational fractures in settings of orthogonal convergence ... 38
3.7 Fractures associated with an earthquake at Dasht-e Bayaz, Iran — August 31, 1968 39
3.8 Structures in settings of oblique convergence .. 40
3.9 Fracture in settings of oblique convergence using aspects of the Riedel Shear Model 41
3.10 Drill testing tension vein mineralization .. 43
3.11 Central Tasman fold belt, eastern Australia ... 44
3.12 Mt. Muro, Kalimantan, Indonesia ... 45
3.13 Dilational veins .. 47
3.14 Extension and mineralization styles at different crustal levels ... 47
3.15 Gympie pull-apart basin and goldfield .. 49
3.16 Fracture/veins and porphyry intrusions .. 53
3.17 Environments of breccia formation ... 57
3.18 Magmatic-hydrothermal breccias — subvolcanic breccia pipe ... 59
3.19 Magmatic-hydrothermal breccias — tourmaline breccia pipes, Chile 60
3.20 Phreatomagmatic breccias .. 61
3.21 Phreatic breccias ... 64
3.22 Magmatic-hydrothermal breccias — injection breccias .. 66
4.1 Common alteration mineralogy in hydrothermal systems .. 71
4.2 Quartz solubility .. 74
4.3 Calcite solubility ... 75
4.4 Barite and anhydrite solubility ... 76
4.5 Au-Cu-Zn Solubility ... 76
4.6 Gold solubility ... 77
4.7 Zinc, lead, and copper solubility .. 79
4.8 Gold fineness ... 80
4.9 Mechanisms for metal zonations in hydrothermal systems ... 81

5.1 Conceptual model of Philippine porphyry systems ... 84
5.2 Early stages of development of SW Pacific porphyry copper-gold systems 86
5.3 Late stages of development of SW Pacific porphyry copper-gold systems 86
5.4 Paragenetic sequence in SW Pacific copper-gold systems ... 87
5.5 Porphyry systems alteration mineralogy .. 87
5.6 Stage II — pre-mineral porphyry veins .. 89
5.7 Spatial and temporal distribution in SW Pacific porphyry copper-gold systems 92
5.8 Evolution of pluton-associated skarns ... 96

6.1 High sulfidation systems — styles ... 101
6.2 High sulfidation systems — two stage fluid alteration and mineralization model 103
6.3 High sulfidation systems — alteration mineralogy ... 104
6.4 High sulfidation systems — metal zonations ... 105
6.5 Horse-Ivaal — surface alteration .. 107
6.6 Horse-Ivaal — alteration zones along a NE cross section .. 107
6.7 Lookout Rocks — alteration and structure .. 108
6.8 Lookout Rocks — alteration cross section ... 109
6.9 Vuda, Fiji — structure and alteration .. 109
6.10 Vuda, Fiji — conceptual alteration and mineralization model ... 110
6.11 Wafi-Bulolo region — structural setting .. 112
6.12 Wafi, Papua New Guinea — plan of alteration ... 113
6.13 Wafi, Papua New Guinea — long section of alteration .. 113
6.14 Wafi — Rafferty’s porphyry setting ... 114
6.15 Nansatsu — Iwato deposit schematic cross section ... 115
6.16 Miwah — alteration ... 116
6.17 Miwah — conceptual long section .. 116
6.18 Frieda-Nena — high sulfidation structural setting ... 118
6.19 Frieda-Nena — alteration and structure .. 118
6.20 Nena — alteration and structure .. 119
6.21 Nena — interpreted cross section 4700N .. 119
6.22 Nena — interpreted cross section 5200N .. 120
6.23 Nena — alteration long section .. 121
6.24 Lepanto/FSE — structural setting ... 121
6.25 Lepanto/FSE — geology and mineralization .. 122
6.26 Mt. Kasi, Fiji — CSAMT/structure ... 124
6.27 Mt. Kasi, Fiji — fluid flow model ... 125
6.28 Peak Hill — structure and alteration .. 126
6.29 Peak Hill — paragenetic sequence of alteration and mineralization 127
7.38 Maniape — cross section of structure and alteration ... 135
7.37 Wild Dog prospect — conceptual cross section ... 134
7.36 Wild Dog prospect — geology .. 133
7.35 Wild Dog prospect — setting .. 133
6.36 Porgera — cross section alteration .. 130
6.35 Busai — high sulfidation gold system .. 129
6.34 Bawone-Binebase, Sangihe Island, Indonesia — high sulfidation gold system 128
6.33 Maniape — alteration cross section .. 129
6.32 Marogorik — alteration and structure .. 129
6.31 Marogorik — setting .. 129
6.30 Peak Hill — alteration cross section ... 128
6.29 Morobe goldfield .. 127
6.28 Bulolo graben .. 126
6.27 Porgera — distribution of carbonate species and sphalerite composition 125
6.26 Porgera — paragenetic sequence for Stage I event ... 126
6.25 Porgera — North-South section .. 126
6.24 Porgera — structure of Waruwari .. 127
6.23 Porgera — structure .. 127
6.22 Porgera — setting .. 127
6.21 Kielian — carbonate species line 250 E .. 128
6.20 Kielian — East-West fluid flow vectors .. 129
6.19 Kielian — geology .. 130
6.18 Kielian — setting .. 130
6.17 Carbonate-base metal-gold systems — zonation in vein mineralogy and styles of mineralization .. 135
6.16 Carbonate-base metal-gold systems — fluid inclusion data 135
6.15 Carbonate-base metal-gold systems — paragenetic sequence 136
6.14 Arakompa — fluid inclusion data .. 136
6.13 Arakompa — paragenetic sequence of vein development and mineralization 136
6.12 Bilimoia — conceptual model .. 136
6.11 Bilimoia — paragenetic sequence of vein development and mineralization 137
6.10 Bilimoia — structure .. 137
6.9 Kidston — distribution of gangue and ore phases in Stage III sheeted veins 138
6.8 Kidston — stages of alteration, vein development, and mineralization 140
6.7 Kidston — geology .. 141
6.6 Kidston — setting ... 141
6.5 Ladolam gold deposit — conceptual model .. 140
6.4 Mt. Kare — carbonate-base metal mineralization and paragenetic sequence 141
6.3 Low sulfidation gold-copper systems — alteration mineralogy 142
6.2 Low sulfidation gold-copper systems — classification and fluid flow model 143
6.1 Low sulfidation gold-copper systems — temporal and spatial zonations 143
5.30 Peak Hill — vertical distribution of systems .. 144
5.29 Morobe goldfield — vertical distribution of systems ... 144
5.28 Bulolo graben .. 145
5.27 Porgera — distribution of carbonate species and sphalerite composition 146
5.26 Porgera — paragenetic sequence for Stage I event ... 147
5.25 Porgera — North-South section .. 147
5.24 Porgera — structure of Waruwari .. 148
5.23 Porgera — structure .. 148
5.22 Porgera — setting .. 148
5.21 Kielian — carbonate species line 250 E .. 149
5.20 Kielian — East-West fluid flow vectors .. 150
5.19 Kielian — geology .. 150
5.18 Kielian — setting ... 150
5.17 Carbonate-base metal-gold systems — zonation in vein mineralogy and styles of mineralization .. 151
5.16 Carbonate-base metal-gold systems — fluid inclusion data 151
5.15 Carbonate-base metal-gold systems — paragenetic sequence 152
5.14 Arakompa — fluid inclusion data .. 152
5.13 Arakompa — paragenetic sequence of vein development and mineralization 153
5.12 Bilimoia — conceptual model .. 153
5.11 Bilimoia — paragenetic sequence of vein development and mineralization 153
5.10 Bilimoia — structure .. 154
5.9 Kidston — distribution of gangue and ore phases in Stage III sheeted veins 154
5.8 Kidston — stages of alteration, vein development, and mineralization 155
5.7 Kidston — geology .. 155
5.6 Kidston — setting ... 156
5.5 Ladolam gold deposit — conceptual model .. 156
5.4 Mt. Kare — carbonate-base metal mineralization and paragenetic sequence 157
5.3 Low sulfidation gold-copper systems — alteration mineralogy 158
5.2 Low sulfidation gold-copper systems — classification and fluid flow model 159
5.1 Low sulfidation gold-copper systems — temporal and spatial zonations 159

ix
7.39 Maniape — paragenetic sequence of vein development and mineralization .. 176
7.40 Mt. Kare — carbonate-base metal cross section ... 177
7.41 Gold Ridge — Vein carbonate-base metal alteration ... 178
7.42 Karangahake Maria Lode — alteration, vein development, and mineralization zonation 179
7.43 Misima — geology ... 180
7.44 Porgera Zone VII — Stage II event paragenetic sequence .. 183
7.45 Porgera Zone VII — alteration cross section ... 184
7.46 Mt. Kare — paragenetic sequence .. 185
7.47 Coromandel Peninsula — setting .. 186
7.48 The Thames goldfield, Ohio Creek Porphyry, and Lookout Rocks alteration — structural setting 187
7.49 Maniape-Arakompa — conceptual fluid flow model .. 188
7.50 Tolukuma — vein system ... 190
7.51 Tolukuma — cross section 22 400 N.. 191
7.52 Tolukuma — paragenetic sequence of alteration and mineralization .. 191
7.53 Tolukuma — long section conceptual fluid flow model .. 192
7.54 Cracow — structural setting ... 193
7.55 Sediment-hosted replacement gold deposits — conceptual model .. 197
7.56 Mesel — structure .. 198
7.57 Mesel — paragenetic sequence of alteration, vein development, and mineralization 199
7.58 Mesel — conceptual fluid flow model ... 199

8.1 Low sulfidation adularia-sericite epithermal gold-silver systems ... 202
8.2 Taupo Volcanic Zone, New Zealand .. 206
8.3 Puhipuhi — geology and structure ... 207
8.4 Golden Cross — structure .. 209
8.5 Golden Cross — alteration structure cross section ... 210
8.6 Golden Cross — alteration long section .. 211
8.7 Waihi (Martha Hill) — structure .. 212
8.8 Hishikari — geology ... 213
8.9 Hishikari — alteration cross section ... 214

List of Tables
1.1 Characteristics of Pacific Rim gold-copper mineralization ... 7
1.2 Distinction between high and low sulfidation systems .. 9
2.1 Fluid geochemistry of selected Philippine and New Zealand geothermal systems 13
3.1 Characteristics of breccia pipes .. 58
7.1 Distinction between adularia-sericite epithermal and epithermal quartz-gold-silver deposits 195
SUMMARY

This publication classifies and describes differing styles of southwest Pacific Rim gold-copper systems, (Fig S.1) and analyzes hydrothermal ore-forming processes. Investigations of these systems in terms of structure, alteration, and styles of mineralization provide information which may help determine the direction of fluid flow within evolving hydrothermal systems.

Major structures localize magmatic hydrothermal systems in magmatic arc settings and create ore-hosting dilational environments within subsidiary structures, commonly at high angles to the controlling structures. Differing styles of convergence influence the style of major structures and ore-forming environments. Breccias occur in most gold-copper deposits and may be categorized as a guide to understanding the ore-forming environment, as broad correlations are apparent between breccia and mineralization styles.

Temperature and fluid pH are considered to be the most important of many factors which control the types of hydrothermal alteration. Hydrothermal minerals are classified in terms of these two factors to create a meaningful interpretation of alteration data. Possible mechanisms of metal transport and deposition provide a framework to understand the distribution of metals in intrusion-related systems.

Porphyry copper-gold systems develop around intrusions which are localized within volcanoplutonic arcs by regional accretionary (arc parallel) or transfer (arc normal) structures. Cooling of intrusions emplaced at high crustal levels results in the conductive heat loss and initial formation of zoned alteration assemblages. This is followed by the exsolution of magmatic fluids and the formation of stockwork to sheeted quartz-dominated vein systems, generally along the margins and around the carapace of the intrusion. Subsequent mineralization occurs within an environment which is conducive to metal deposition, and it is interpreted that these conditions are created as a result of cooling, predominantly by dilute meteoric waters. Porphyry copper mineralization concentrates in zones of greatest paleo-permeability, commonly along the fault controlled margins of the host intrusion and refractured pre-existing stockwork veins. It is proposed that mineralization mainly results from mixing of meteoric waters with metal-bearing magmatic fluids, possibly derived from larger magma sources at depth. Skarn deposits exhibit similar prograde and retrograde alteration and mineralization in response to the emplacement of intrusions into calcareous rocks.

High sulfidation gold-copper systems are formed from hot, acidic, magmatic-derived fluids and extend from porphyry to epithermal regimes. High sulfidation alteration forms as shoulders and caps to porphyry intrusions, where zonations in alteration reflect progressive cooling and subsequent decrease in fluid pH in response to gradual dissociation of reactive magmatic gases. The high formation temperature of these systems, proximal to the source intrusion, is inferred to inhibit the formation of copper-gold mineralization which occurs in cooler, more distal environments. These systems are classified according to the predominance of either structural or lithological control to fluid flow as members of a continuum. All mineralized systems exhibit characteristic alteration zonation resulting from progressive cooling and neutralization of hot acidic magmatic-dominated fluids by reaction with host rocks and ground waters. Variations in the style of mineralization, metal content, and alteration mineralogy depend upon temperature and fluid composition. A two stage alteration and mineralization model is proposed which suggests that initial vapor-dominated fluids develop zoned, commonly pre-mineralization alteration, which is overprinted and typically brecciated during influxes of mineralized liquid-rich fluids. High sulfidation systems are copper-rich at depth and are gold-rich at higher crustal levels.

Varying styles of low sulfidation gold systems predominate in settings of oblique subduction, where magmatic fluids migrate away from intrusion source rocks into environments which contain meteoric waters of different compositions and temperatures. Metals grade from gold and possible copper-bearing at depth, through gold with base metals at intermediate levels, to gold-silver bearing at highest crustal levels.

Quartz-sulfide gold ± copper systems form proximal to magmatic source rocks, predominantly by the mixing of magmatic fluids with deep circulating cool and dilute meteoric waters. Carbonate-base metal gold
Fig. S.1 Southwest Pacific Rim plate margins and gold-copper occurrences
systems form at higher levels, mainly by reaction of magmatic-dominated fluids with low pH, CO₂-rich waters. Epithermal quartz-gold-silver systems form at the highest crustal levels and display the most distal relationship to the magmatic source. Bonanza gold grades develop in these systems by the mixing of more dilute, boiling, magmatic-derived fluids with oxidizing ground waters. This latter group of deposits is transitional to the classic adularia-sericite epithermal gold-silver vein systems. Telescoping may overprint the varying styles of low sulfidation gold mineralization upon each other or upon the source porphyry intrusion. Sediment hosted replacement gold deposits are herein classified as genetically related to low sulfidation quartz-sulfide systems, but develop in reactive carbonate rocks.

Adularia-sericite epithermal gold-silver deposits form at elevated crustal settings in the absence of an obvious intrusion source for the mineralization. These systems vary with increasing depth from generally barren surficial sinter/hot spring deposits, to stockwork vein/breccias and fissure veins. Brittle basement rocks fracture well and so represent competent hosts for fissure veins within dilational structural settings. Boiling models account for the deposition from meteoric waters of the characteristic gangue minerals comprising banded quartz, adularia, and quartz pseudomorphing platy carbonate. However, precious and base metals are postulated to be magmatic-derived and are concentrated in thin sulfide-rich bands, commonly with low temperature clay minerals. Mineralization is therefore interpreted to have been deposited mainly by the mixing of upwelling, commonly boiling, mineralized fluids with cool, oxidizing ground water.

The ore deposit models defined herein are useful in all stages of mineral exploration, from the recognition of the style of deposit, to the delineation of fluid flow paths as a means of targeting high grade ores, or porphyry source rocks. The exploration geologist may be aided by the use of conceptual exploration models which are interpretative and vary from the more rigorously defined deposit and exploration models. Conceptual models should not be applied rigidly but modified using an understanding of the processes described herein to develop models which are tailored to individual prospects.